AFLOW Prototype: A_hR12_166_2h-001
This structure originally had the label A_hR12_166_2h. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/1Y2H
or
https://aflow.org/p/A_hR12_166_2h-001
or
PDF Version
Prototype | B |
AFLOW prototype label | A_hR12_166_2h-001 |
ICSD | 26487 |
Pearson symbol | hR12 |
Space group number | 166 |
Space group symbol | $R\overline{3}m$ |
AFLOW prototype command |
aflow --proto=A_hR12_166_2h-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak z_{2}$ |
--hex
. Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ | (6h) | B I |
$\mathbf{B_{2}}$ | = | $z_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ | (6h) | B I |
$\mathbf{B_{3}}$ | = | $x_{1} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ | = | $- \frac{1}{\sqrt{3}}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ | (6h) | B I |
$\mathbf{B_{4}}$ | = | $- z_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ | (6h) | B I |
$\mathbf{B_{5}}$ | = | $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ | (6h) | B I |
$\mathbf{B_{6}}$ | = | $- x_{1} \, \mathbf{a}_{1}- z_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ | = | $\frac{1}{\sqrt{3}}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ | (6h) | B I |
$\mathbf{B_{7}}$ | = | $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ | (6h) | B II |
$\mathbf{B_{8}}$ | = | $z_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ | (6h) | B II |
$\mathbf{B_{9}}$ | = | $x_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ | = | $- \frac{1}{\sqrt{3}}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ | (6h) | B II |
$\mathbf{B_{10}}$ | = | $- z_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ | (6h) | B II |
$\mathbf{B_{11}}$ | = | $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ | (6h) | B II |
$\mathbf{B_{12}}$ | = | $- x_{2} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{\sqrt{3}}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ | (6h) | B II |