Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A_hR12_166_2h-001

This structure originally had the label A_hR12_166_2h. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/1Y2H
or https://aflow.org/p/A_hR12_166_2h-001
or PDF Version

α-B (R-12) Structure: A_hR12_166_2h-001

Picture of Structure; Click for Big Picture
Prototype B
AFLOW prototype label A_hR12_166_2h-001
ICSD 26487
Pearson symbol hR12
Space group number 166
Space group symbol $R\overline{3}m$
AFLOW prototype command aflow --proto=A_hR12_166_2h-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak z_{2}$

  • This is a metastable phase of boron, also known as rhombohedral-12 boron (Donohue, 1982). It is the simplest known phase (the ground state, $\beta$–B, has 105 atoms in the primitive cell).
  • Note the relationship between the icosahedra in this structure, $\beta$–B and T-50 B.
  • Hexagonal settings for rhombohedral structures can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ (6h) B I
$\mathbf{B_{2}}$ = $z_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ (6h) B I
$\mathbf{B_{3}}$ = $x_{1} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ (6h) B I
$\mathbf{B_{4}}$ = $- z_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ (6h) B I
$\mathbf{B_{5}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ (6h) B I
$\mathbf{B_{6}}$ = $- x_{1} \, \mathbf{a}_{1}- z_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ (6h) B I
$\mathbf{B_{7}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6h) B II
$\mathbf{B_{8}}$ = $z_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6h) B II
$\mathbf{B_{9}}$ = $x_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6h) B II
$\mathbf{B_{10}}$ = $- z_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6h) B II
$\mathbf{B_{11}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6h) B II
$\mathbf{B_{12}}$ = $- x_{2} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6h) B II

References

  • B. F. Decker and J. S. Kasper, The crystal structure of a simple rhombohedral form of boron, Acta Cryst. 12, 503–506 (1959), doi:10.1107/S0365110X59001529.

Found in

  • J. Donohue, The Structures of the Elements (Robert E. Krieger Publishing Company, New York, 1974).

Prototype Generator

aflow --proto=A_hR12_166_2h --params=$a,c/a,x_{1},z_{1},x_{2},z_{2}$

Species:

Running:

Output: