Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A_hP6_194_h-001

This structure originally had the label A_hP6_194_h. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/1BYJ
or https://aflow.org/p/A_hP6_194_h-001
or PDF Version

Hypothetical Tetrahedrally Bonded Carbon with 3-Member Rings Model Structure: A_hP6_194_h-001

Picture of Structure; Click for Big Picture
Prototype C
AFLOW prototype label A_hP6_194_h-001
ICSD None
Pearson symbol hP6
Space group number 194
Space group symbol $P6_3/mmc$
AFLOW prototype command aflow --proto=A_hP6_194_h-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}$

  • This structure was proposed in (Schultz, 1999) to show that it was energetically possible to form three-member rings in amorphous sp$^{3}$ carbon structures.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+2 x_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{1} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) C I
$\mathbf{B_{2}}$ = $- 2 x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{1} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) C I
$\mathbf{B_{3}}$ = $x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{1} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) C I
$\mathbf{B_{4}}$ = $- x_{1} \, \mathbf{a}_{1}- 2 x_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{1} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) C I
$\mathbf{B_{5}}$ = $2 x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{1} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) C I
$\mathbf{B_{6}}$ = $- x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{1} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) C I

References

  • P. A. Schultz, K. Leung, and E. B. Stechel, Small rings and amorphous tetrahedral carbon, Phys. Rev. B 59, 733–741 (1999), doi:10.1103/PhysRevB.59.733.

Prototype Generator

aflow --proto=A_hP6_194_h --params=$a,c/a,x_{1}$

Species:

Running:

Output: