Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A_hP4_194_f-001

This structure originally had the label A_hP4_194_f. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/4AMD
or https://aflow.org/p/A_hP4_194_f-001
or PDF Version

Lonsdaleite (Hexagonal Diamond) Structure: A_hP4_194_f-001

Picture of Structure; Click for Big Picture
Prototype C
AFLOW prototype label A_hP4_194_f-001
Mineral name lonsdaleite
ICSD 66465
Pearson symbol hP4
Space group number 194
Space group symbol $P6_3/mmc$
AFLOW prototype command aflow --proto=A_hP4_194_f-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}$

Other compounds with this structure

Ge (hexagonal),  H (hexagonal),  N (hexagonal),  O (hexagonal),  Si (hexagonal)


  • Hexagonal diamond was named lonsdaleite in honor of Kathleen Lonsdale.
  • This structure is related to the hcp ($A3$) structure in the same way that diamond ($A4$) is related to the fcc lattice ($A1$).
  • It can also be obtained from wurtzite ($B4$) by replacing both the Zn and S atoms by carbon.
  • The ideal structure, where the nearest-neighbor environment of each atom is the same as in diamond, is achieved when we take $c/a=\sqrt{8/3}$ and $z_{1}=1/16$.
  • Alternatively, we can take $z_{1}=3/16$, in which case the origin is at the center of a C-C bond aligned in the [0001] direction.
  • When $z_{1}=0$ this structure becomes a set of graphitic sheets, but not true hexagonal graphite ($A9$), as the stacking differs.
  • (Yoshiasa, 2003) does not have an ICSD entry for Lonsdaleite, so we use the one provided for (Ownby, 1992).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (4f) C I
$\mathbf{B_{2}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) C I
$\mathbf{B_{3}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ (4f) C I
$\mathbf{B_{4}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- \left(z_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c \left(z_{1} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) C I

References

  • A. Yoshiasa, Y. Murai, O. Ohtaka, and T. Katsura, Detailed Structures of Hexagonal Diamond (lonsdaleite) and Wurtzite-type BN, Jpn. J. Appl. Phys. 42, 1694–1704 (2003), doi:10.1143/JJAP.42.1694.
  • P. D. Ownby, X. Yang, and J. Liu, Calculated X-ray Diffraction Data for Diamond Polytypes, J. Am. Ceram. Soc. 75, 1876–1883 (1992), doi:10.1111/j.1151-2916.1992.tb07211.x.

Prototype Generator

aflow --proto=A_hP4_194_f --params=$a,c/a,z_{1}$

Species:

Running:

Output: