Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A_hP3_152_a-001

This structure originally had the label A_hP3_152_a. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/SM1V
or https://aflow.org/p/A_hP3_152_a-001
or PDF Version

γ-Se ($A8$) Structure: A_hP3_152_a-001

Picture of Structure; Click for Big Picture
Prototype Se
AFLOW prototype label A_hP3_152_a-001
Strukturbericht designation $A8$
ICSD 22251
Pearson symbol hP3
Space group number 152
Space group symbol $P3_121$
AFLOW prototype command aflow --proto=A_hP3_152_a-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}$

Other compounds with this structure

Te,  SeTe,  Se$_{3}$Te


  • There are a variety of naming conventions for selenium:
  • (Cherin, 1967) refers to this structure as trigonal selenium. (Donohue, 1982) refers to it as the $\alpha$–Se structure, calling what we designate $\alpha$–Se and $\beta$–Se ($A_{l}$) as monoclinic $\alpha$ and monoclinic $\beta$, respectively.
  • When $x=1/3$ this reduces to the $A_{i}$ ($\beta$–Po) or $A10$ ($\alpha$–Hg) structure.
  • If, in addition, $c=\sqrt{6}a$, then the structure becomes fcc ($A1$).
  • On the other hand, if $c=\sqrt{3/2}a$, then the structure becomes simple cubic ($A_{h}$).
  • This structure can also be found in the enantiomorphic space group $P3_{2}$ #153.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{1} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (3a) Se I
$\mathbf{B_{2}}$ = $x_{1} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{1} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ (3a) Se I
$\mathbf{B_{3}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}$ = $- a x_{1} \,\mathbf{\hat{x}}$ (3a) Se I

References

  • P. Cherin and P. Unger, The crystal structure of trigonal selenium, Inorg. Chem. 6, 1589–1591 (1967), doi:10.1021/ic50054a037.

Found in

  • J. Donohue, The Structures of the Elements (Robert E. Krieger Publishing Company, New York, 1974).

Prototype Generator

aflow --proto=A_hP3_152_a --params=$a,c/a,x_{1}$

Species:

Running:

Output: