Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB_hP4_186_b_b-001

This structure originally had the label AB_hP4_186_b_b. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/6CGK
or https://aflow.org/p/AB_hP4_186_b_b-001
or PDF Version

Wurtzite (ZnS, $B4$) Structure: AB_hP4_186_b_b-001

Picture of Structure; Click for Big Picture
Prototype SZn
AFLOW prototype label AB_hP4_186_b_b-001
Strukturbericht designation $B4$
Mineral name wurtzite
ICSD 67453
Pearson symbol hP4
Space group number 186
Space group symbol $P6_3mc$
AFLOW prototype command aflow --proto=AB_hP4_186_b_b-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}$

Other compounds with this structure

$\beta$-AgI,  AlN,  BN,  BeO,  CdS,  CdSe,  CdSe,  CuH,  $\beta$-CuI,  GaN,  InN,  MgTe,  $\gamma$-MnS,  $\gamma$-MnSe,  SiC,  ZnO,  ZnSe


  • This is the hexagonal analog of zincblende ($B3$), i.e. the stacking of the ZnS dimers along the (0001) direction is ABABAB… Replacing both the Zn and S atoms by C (or Si) gives the hexagonal diamond structure. The ideal structure, where the nearest-neighbor environment of each atom is the same as in zincblende, is achieved when we take $c/a=\sqrt{8/3}$ and $z_{2}=1/8$. In the extreme case $z_{2}=1/2$ this structure becomes the BN ($B_{k}$) structure.
  • We have arbitrarily chosen the $z_{2}$ parameter for the zinc atoms to be zero, as allowed by space group $P6_{3}mc$ #186.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (2b) S I
$\mathbf{B_{2}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) S I
$\mathbf{B_{3}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (2b) Zn I
$\mathbf{B_{4}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) Zn I

References

  • E. H. Kisi and M. M. Elcombe, $u$ parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction, Acta Crystallogr. Sect. C 45, 1867–1870 (1989), doi:10.1107/S0108270189004269.

Found in

  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Prototype Generator

aflow --proto=AB_hP4_186_b_b --params=$a,c/a,z_{1},z_{2}$

Species:

Running:

Output: