Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB_hP12_194_af_bf-001

This structure originally had the label AB_hP12_194_af_bf. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/Q5G8
or https://aflow.org/p/AB_hP12_194_af_bf-001
or PDF Version

CMo Structure: AB_hP12_194_af_bf-001

Picture of Structure; Click for Big Picture
Prototype CMo
AFLOW prototype label AB_hP12_194_af_bf-001
ICSD 44987
Pearson symbol hP12
Space group number 194
Space group symbol $P6_3/mmc$
AFLOW prototype command aflow --proto=AB_hP12_194_af_bf-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}$

Other compounds with this structure

CRe,  BaGaGe,  CaGaGe,  CaGaSn,  CeNiP,  DyNiP,  GaGeSr,  GdNiP,  HoNiP,  LiNiP,  LuNiP,  LuNiP,  NdNiP,  NiPPr,  NiPTb,  NiPTm,  NiPY,  C$_{2}$GeTi$_{3}$,  C$_{2}$SiTi$_{3}$,  C$_{2}$AlTi$_{3}$


  • Note that all of the atoms sit on close packed $<$$0001$$>$ planes. The stacking sequence may be written:

    Atom Mo-II C-II C-I C-II Mo-II Mo-I Mo-II C-II C-I C-II Mo-II Mo-I
    Position B C A B C A C B A C B A

  • Thus the Mo-II atoms and all of the C atoms are always in an fcc-like local environment, while the Mo-I atoms are in an hcp-like local environment. Like AlN$_{3}$Ti$_{4}$, this is a MAX phase. For more information, see (Radovic, 2013).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) C I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (2a) C I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}c \,\mathbf{\hat{z}}$ (2b) Mo I
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}c \,\mathbf{\hat{z}}$ (2b) Mo I
$\mathbf{B_{5}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4f) C II
$\mathbf{B_{6}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) C II
$\mathbf{B_{7}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (4f) C II
$\mathbf{B_{8}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) C II
$\mathbf{B_{9}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4f) Mo II
$\mathbf{B_{10}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) Mo II
$\mathbf{B_{11}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (4f) Mo II
$\mathbf{B_{12}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) Mo II

References

  • H. Nowotny, R. Parthé, and F. Benesovsky, Das Dreistotfsystem: Molybdän–Silizium–K0hlenstoff, Monatsh. Chem. Verw. Tl. 85, 255–272 (1954).
  • M. Radovic and M. W. Barsoum, MAX phases: Bridging the gap between metals and ceramics, American Ceramic Society Bulletin 92, 20–27 (2013).

Prototype Generator

aflow --proto=AB_hP12_194_af_bf --params=$a,c/a,z_{3},z_{4}$

Species:

Running:

Output: