Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB_hP12_164_c2d_c2d-001

This structure originally had the label AB_hP12_164_c2d_c2d. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/UEMM
or https://aflow.org/p/AB_hP12_164_c2d_c2d-001
or PDF Version

Nevskite (BiSe) Structure: AB_hP12_164_c2d_c2d-001

Picture of Structure; Click for Big Picture
Prototype BiSe
AFLOW prototype label AB_hP12_164_c2d_c2d-001
Mineral name nevskite
ICSD 79019
Pearson symbol hP12
Space group number 164
Space group symbol $P\overline{3}m1$
AFLOW prototype command aflow --proto=AB_hP12_164_c2d_c2d-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}$

Other compounds with this structure

BiTe (tsumoite),  Bi(S$_{0.56}$Te$_{0.44}$) (ingodite)


  • The site Bi I actually has the composition (Bi$_{0.74}$Se$_{0.26}$), while the site Se II is actuall (Se$_{0.72}$,Bi$_{0.28}$).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (2c) Bi I
$\mathbf{B_{2}}$ = $- z_{1} \, \mathbf{a}_{3}$ = $- c z_{1} \,\mathbf{\hat{z}}$ (2c) Bi I
$\mathbf{B_{3}}$ = $z_{2} \, \mathbf{a}_{3}$ = $c z_{2} \,\mathbf{\hat{z}}$ (2c) Se I
$\mathbf{B_{4}}$ = $- z_{2} \, \mathbf{a}_{3}$ = $- c z_{2} \,\mathbf{\hat{z}}$ (2c) Se I
$\mathbf{B_{5}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (2d) Bi II
$\mathbf{B_{6}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (2d) Bi II
$\mathbf{B_{7}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (2d) Bi III
$\mathbf{B_{8}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (2d) Bi III
$\mathbf{B_{9}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (2d) Se II
$\mathbf{B_{10}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (2d) Se II
$\mathbf{B_{11}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (2d) Se III
$\mathbf{B_{12}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (2d) Se III

References

  • E. Gaudin, S. Jobic, M. Evain, R. Brec, and J. Rouxel, Charge balance in some Bi$_{x}$Se$_{y}$ phases through atomic structure determination and band structure calculations, Mater. Res. Bull. 30, 549–561 (1995), doi:10.1016/0025-5408(95)00030-5.

Found in

  • K. Majhi, K. Pal, H. Lohani, A. Banerjee, P. Mishra, A. K. Y. R. Ganesan, B. R. Sekhar, U. V. Waghmare, and P. S. A. Kumar, Emergence of a weak topological insulator from the Bi$_{x}$Se$_{y}$ family, Appl. Phys. Lett. 110, 162102 (2017), doi:10.1063/1.4981875.

Prototype Generator

aflow --proto=AB_hP12_164_c2d_c2d --params=$a,c/a,z_{1},z_{2},z_{3},z_{4},z_{5},z_{6}$

Species:

Running:

Output: