Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB_hP12_156_3a2bc_3a2bc-001

This structure originally had the label AB_hP12_156_2ab3c_2ab3c. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/ZMXD
or https://aflow.org/p/AB_hP12_156_3a2bc_3a2bc-001
or PDF Version

β-CuI (Kurdyumova) Structure: AB_hP12_156_3a2bc_3a2bc-001

Picture of Structure; Click for Big Picture
Prototype CuI
AFLOW prototype label AB_hP12_156_3a2bc_3a2bc-001
ICSD 30363
Pearson symbol hP12
Space group number 156
Space group symbol $P3m1$
AFLOW prototype command aflow --proto=AB_hP12_156_3a2bc_3a2bc-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak z_{8}, \allowbreak z_{9}, \allowbreak z_{10}, \allowbreak z_{11}, \allowbreak z_{12}$

  • Copper(I) iodide can be found in three forms (Keen, 1995):
    • $\alpha$–CuI is stable above 673$\pm$8K, and is in the $\delta$–Bi$_{2}$O$_{3}$ structure, with the iodine atoms on the (2a) Wyckoff positions and the copper atoms occupying 1/8 of the (32f) positions.
    • $\gamma$–CuI (marshite) is the ground state, stable below $643 \pm 2$K, and is also in the $\delta$–Bi$_{2}$O$_{3}$ structure.
    • In the intermediate temperature range $\beta$–CuI is generally agreed to be trigonal or hexagonal, but the exact structure is under dispute:
  • Space group $P3m1$ #156 allows an arbitary choice of origin for the $z$-axis. Used this freedom to place the I-III atom at the origin.
  • This structure originally appeared in (Hicks, 2019). This page has been rewritten, but the structure itself has not changed.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (1a) Cu I
$\mathbf{B_{2}}$ = $z_{2} \, \mathbf{a}_{3}$ = $c z_{2} \,\mathbf{\hat{z}}$ (1a) Cu II
$\mathbf{B_{3}}$ = $z_{3} \, \mathbf{a}_{3}$ = $c z_{3} \,\mathbf{\hat{z}}$ (1a) Cu III
$\mathbf{B_{4}}$ = $z_{4} \, \mathbf{a}_{3}$ = $c z_{4} \,\mathbf{\hat{z}}$ (1a) I I
$\mathbf{B_{5}}$ = $z_{5} \, \mathbf{a}_{3}$ = $c z_{5} \,\mathbf{\hat{z}}$ (1a) I II
$\mathbf{B_{6}}$ = $z_{6} \, \mathbf{a}_{3}$ = $c z_{6} \,\mathbf{\hat{z}}$ (1a) I III
$\mathbf{B_{7}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (1b) Cu IV
$\mathbf{B_{8}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (1b) Cu V
$\mathbf{B_{9}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (1b) I IV
$\mathbf{B_{10}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (1b) I V
$\mathbf{B_{11}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (1c) Cu VI
$\mathbf{B_{12}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (1c) I VI

References

  • R. N. Kurdyumova and R. V. Baranova, An electron diffraction study of thin films of cuprous iodide, Sov. Phys. Cryst. 6, 318–321 (1961).
  • W. Bührer and W. Hälg, Crystal structure of high-temperature cuprous iodide and cuprous bromide, Electrochimica Acta 22, 701–704 (1977), doi:10.1016/0013-4686(77)80021-2.
  • T. Sakuma, Crystal Structure of β-CuI, J. Phys. Soc. Jpn. 57, 565–569 (1988), doi:10.1143/JPSJ.57.565.
  • D. A. Keen and S. Hull, Determination of the structure of β-CuI by high-resolution neutron powder diffraction, J. Phys.: Condens. Matter 6, 1637–1644 (1994), doi:10.1088/0953-8984/6/9/006.
  • D. A. Keen and S. Hull, The high-temperature structural behaviour of copper(I) iodide, J. Phys.: Condens. Matter 7, 5793–5804 (1995), doi:10.1088/0953-8984/7/29/007.
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comput. Mater. Sci. 161, S1–S1011 (2019), doi:10.1016/j.commatsci.2018.10.043.

Found in

  • S. C. Abrahams, Inorganic structures in space group $P3m1$; coordinate analysis and systematic prediction of new ferroelectrics, Acta Crystallogr. Sect. B 64, 426–437 (2008), doi:10.1107/S0108768108018144.

Prototype Generator

aflow --proto=AB_hP12_156_3a2bc_3a2bc --params=$a,c/a,z_{1},z_{2},z_{3},z_{4},z_{5},z_{6},z_{7},z_{8},z_{9},z_{10},z_{11},z_{12}$

Species:

Running:

Output: