Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC_hP6_186_b_b_a-003

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/ZZ7U
or https://aflow.org/p/ABC_hP6_186_b_b_a-003
or PDF Version

LiGaGe Crystal Structure: ABC_hP6_186_b_b_a-003

Picture of Structure; Click for Big Picture
Prototype GaGeLi
AFLOW prototype label ABC_hP6_186_b_b_a-003
ICSD 25310
Pearson symbol hP6
Space group number 186
Space group symbol $P6_3mc$
AFLOW prototype command aflow --proto=ABC_hP6_186_b_b_a-003
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}$

Other compounds with this structure

BeLiSb,  CaAgBi,  CeAuGe,  DyAuGe,  DyCuGe,  ErAuGe,  ErCuGe,  EuAuGe,  GdAuGe,  HoAuGe,  HoCuGe,  LaAgSn,  LaAuGe,  LaAuSn,  LaCuSn,  LuAuGe,  NdAgSn,  NdAuGe,  NdAuSn,  NdCuSn,  PmAuGe,  PrAgSn,  PrAuGe,  PrAuSn,  PrCuSn,  SmAuGe,  TbAuGe,  TbCuGe,  TiCuSn,  TmAuGe,  YAuGe,  YCuPb,  YbAuGe


  • This is the ternary form of the $C27$ (CdI$_{2}$) structure.
  • The choice of the origin of the $z$-axis in space group $P6_{3}mc$ #186 is arbitrary, we use the values given by (Bockelmann, 2012).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (2a) La I
$\mathbf{B_{2}}$ = $\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) La I
$\mathbf{B_{3}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (2b) Ga I
$\mathbf{B_{4}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) Ga I
$\mathbf{B_{5}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (2b) Ge I
$\mathbf{B_{6}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) Ge I

References

  • W. Bockelmann and H.-U. Schuster, Ternäre Phasen im Dreistoffsystem Lithium‐Gallium‐Germanium, Z. Anorganische und Allgemeine Chemie 410, 233–240 (1974), doi:10.1002/zaac.19744100303.

Prototype Generator

aflow --proto=ABC_hP6_186_b_b_a --params=$a,c/a,z_{1},z_{2},z_{3}$

Species:

Running:

Output: