AFLOW Prototype: ABC_hP6_186_b_b_a-003
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/ZZ7U
or
https://aflow.org/p/ABC_hP6_186_b_b_a-003
or
PDF Version
Prototype | GaGeLi |
AFLOW prototype label | ABC_hP6_186_b_b_a-003 |
ICSD | 25310 |
Pearson symbol | hP6 |
Space group number | 186 |
Space group symbol | $P6_3mc$ |
AFLOW prototype command |
aflow --proto=ABC_hP6_186_b_b_a-003
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}$ |
BeLiSb, CaAgBi, CeAuGe, DyAuGe, DyCuGe, ErAuGe, ErCuGe, EuAuGe, GdAuGe, HoAuGe, HoCuGe, LaAgSn, LaAuGe, LaAuSn, LaCuSn, LuAuGe, NdAgSn, NdAuGe, NdAuSn, NdCuSn, PmAuGe, PrAgSn, PrAuGe, PrAuSn, PrCuSn, SmAuGe, TbAuGe, TbCuGe, TiCuSn, TmAuGe, YAuGe, YCuPb, YbAuGe
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $z_{1} \, \mathbf{a}_{3}$ | = | $c z_{1} \,\mathbf{\hat{z}}$ | (2a) | La I |
$\mathbf{B_{2}}$ | = | $\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (2a) | La I |
$\mathbf{B_{3}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (2b) | Ga I |
$\mathbf{B_{4}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (2b) | Ga I |
$\mathbf{B_{5}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (2b) | Ge I |
$\mathbf{B_{6}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (2b) | Ge I |