AFLOW Prototype: ABC_hP36_175_jk_jk_jk-001
This structure originally had the label ABC_hP36_175_jk_jk_jk. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/12DH
or
https://aflow.org/p/ABC_hP36_175_jk_jk_jk-001
or
PDF Version
Prototype | HMgN |
AFLOW prototype label | ABC_hP36_175_jk_jk_jk-001 |
ICSD | 261304 |
Pearson symbol | hP36 |
Space group number | 175 |
Space group symbol | $P6/m$ |
AFLOW prototype command |
aflow --proto=ABC_hP36_175_jk_jk_jk-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak x_{6}, \allowbreak y_{6}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \left(x_{1} + y_{1}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{1} - y_{1}\right) \,\mathbf{\hat{y}}$ | (6j) | H I |
$\mathbf{B_{2}}$ | = | $- y_{1} \, \mathbf{a}_{1}+\left(x_{1} - y_{1}\right) \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \left(x_{1} - 2 y_{1}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}$ | (6j) | H I |
$\mathbf{B_{3}}$ | = | $- \left(x_{1} - y_{1}\right) \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}$ | = | $- \frac{1}{2}a \left(2 x_{1} - y_{1}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{1} \,\mathbf{\hat{y}}$ | (6j) | H I |
$\mathbf{B_{4}}$ | = | $- x_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}$ | = | $- \frac{1}{2}a \left(x_{1} + y_{1}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{1} - y_{1}\right) \,\mathbf{\hat{y}}$ | (6j) | H I |
$\mathbf{B_{5}}$ | = | $y_{1} \, \mathbf{a}_{1}- \left(x_{1} - y_{1}\right) \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \left(- x_{1} + 2 y_{1}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}$ | (6j) | H I |
$\mathbf{B_{6}}$ | = | $\left(x_{1} - y_{1}\right) \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \left(2 x_{1} - y_{1}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{1} \,\mathbf{\hat{y}}$ | (6j) | H I |
$\mathbf{B_{7}}$ | = | $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \left(x_{2} + y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{2} - y_{2}\right) \,\mathbf{\hat{y}}$ | (6j) | Mg I |
$\mathbf{B_{8}}$ | = | $- y_{2} \, \mathbf{a}_{1}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \left(x_{2} - 2 y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}$ | (6j) | Mg I |
$\mathbf{B_{9}}$ | = | $- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ | = | $- \frac{1}{2}a \left(2 x_{2} - y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{2} \,\mathbf{\hat{y}}$ | (6j) | Mg I |
$\mathbf{B_{10}}$ | = | $- x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}$ | = | $- \frac{1}{2}a \left(x_{2} + y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{2} - y_{2}\right) \,\mathbf{\hat{y}}$ | (6j) | Mg I |
$\mathbf{B_{11}}$ | = | $y_{2} \, \mathbf{a}_{1}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \left(- x_{2} + 2 y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}$ | (6j) | Mg I |
$\mathbf{B_{12}}$ | = | $\left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \left(2 x_{2} - y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{2} \,\mathbf{\hat{y}}$ | (6j) | Mg I |
$\mathbf{B_{13}}$ | = | $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \left(x_{3} + y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{y}}$ | (6j) | N I |
$\mathbf{B_{14}}$ | = | $- y_{3} \, \mathbf{a}_{1}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \left(x_{3} - 2 y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}$ | (6j) | N I |
$\mathbf{B_{15}}$ | = | $- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ | = | $- \frac{1}{2}a \left(2 x_{3} - y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{3} \,\mathbf{\hat{y}}$ | (6j) | N I |
$\mathbf{B_{16}}$ | = | $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}$ | = | $- \frac{1}{2}a \left(x_{3} + y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{y}}$ | (6j) | N I |
$\mathbf{B_{17}}$ | = | $y_{3} \, \mathbf{a}_{1}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \left(- x_{3} + 2 y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}$ | (6j) | N I |
$\mathbf{B_{18}}$ | = | $\left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \left(2 x_{3} - y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{3} \,\mathbf{\hat{y}}$ | (6j) | N I |
$\mathbf{B_{19}}$ | = | $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6k) | H II |
$\mathbf{B_{20}}$ | = | $- y_{4} \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{4} - 2 y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6k) | H II |
$\mathbf{B_{21}}$ | = | $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6k) | H II |
$\mathbf{B_{22}}$ | = | $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6k) | H II |
$\mathbf{B_{23}}$ | = | $y_{4} \, \mathbf{a}_{1}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{4} + 2 y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6k) | H II |
$\mathbf{B_{24}}$ | = | $\left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6k) | H II |
$\mathbf{B_{25}}$ | = | $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{5} + y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6k) | Mg II |
$\mathbf{B_{26}}$ | = | $- y_{5} \, \mathbf{a}_{1}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{5} - 2 y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6k) | Mg II |
$\mathbf{B_{27}}$ | = | $- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{5} - y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6k) | Mg II |
$\mathbf{B_{28}}$ | = | $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{5} + y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6k) | Mg II |
$\mathbf{B_{29}}$ | = | $y_{5} \, \mathbf{a}_{1}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{5} + 2 y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6k) | Mg II |
$\mathbf{B_{30}}$ | = | $\left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{5} - y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6k) | Mg II |
$\mathbf{B_{31}}$ | = | $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6k) | N II |
$\mathbf{B_{32}}$ | = | $- y_{6} \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{6} - 2 y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6k) | N II |
$\mathbf{B_{33}}$ | = | $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6k) | N II |
$\mathbf{B_{34}}$ | = | $- x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6k) | N II |
$\mathbf{B_{35}}$ | = | $y_{6} \, \mathbf{a}_{1}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{6} + 2 y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6k) | N II |
$\mathbf{B_{36}}$ | = | $\left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6k) | N II |