Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC8D2_hP12_150_a_b_dg_d-001

This structure originally had the label ABC8D2_hP12_150_b_a_dg_d. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/SDL2
or https://aflow.org/p/ABC8D2_hP12_150_a_b_dg_d-001
or PDF Version

Steklite [KAl(SO$_{4}$)$_{2}$, $H3_{2}$] Structure: ABC8D2_hP12_150_a_b_dg_d-001

Picture of Structure; Click for Big Picture
Prototype AlKO$_{8}$S$_{2}$
AFLOW prototype label ABC8D2_hP12_150_a_b_dg_d-001
Strukturbericht designation $H3_{2}$
Mineral name steklite
ICSD 60170
Pearson symbol hP12
Space group number 150
Space group symbol $P321$
AFLOW prototype command aflow --proto=ABC8D2_hP12_150_a_b_dg_d-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}$

Other compounds with this structure

NH$_{4}$(Al,  Fe)(SO$_{4}$)$_{2}$ (godovikovite),  KCr(SO$_{4}$)$_{2}$,  RbCr(SO$_{4}$)$_{2}$


  • This has been a rather difficult structure to follow through the literature. (Villars, 2016) quotes the structure given by (Manoli, 1970), but gives the space group as $P\overline{3}$ #147. (Murashko, 2013) lists the space group as both $P312$ #149 and $P321$ #150, as well as listing obviously incorrect Wyckoff positions.
  • (West, 2008) states that the simple structure is in $P\overline{3}$ but that it may be doubled along the $c$ axis and be in space group $P321$.
  • After correcting Murashko's results, we find that all of these interpretations yield essentially the same structure in a given layer, and only differ as the structure is reflected through the $z = 0$ plane. As it is not clear which structure is correct, we will use the original $H3_{2}$ structure given by (Hermann, 1937).
  • Steklite is the name of the mineral form of this compound (Murashko, 2013). (Hermann, 1937) simply calls it Wasserfreier Alaun (anhydrous alum). For hydrated alum, KAl(SO$_{4}$)$_{2}$·12H$_{2}$O, see the $H4_{13}$ structure.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Al I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (1b) K I
$\mathbf{B_{3}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (2d) O I
$\mathbf{B_{4}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (2d) O I
$\mathbf{B_{5}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (2d) S I
$\mathbf{B_{6}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (2d) S I
$\mathbf{B_{7}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} + y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (6g) O II
$\mathbf{B_{8}}$ = $- y_{5} \, \mathbf{a}_{1}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} - 2 y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (6g) O II
$\mathbf{B_{9}}$ = $- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{5} - y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (6g) O II
$\mathbf{B_{10}}$ = $y_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} + y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (6g) O II
$\mathbf{B_{11}}$ = $\left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} - 2 y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (6g) O II
$\mathbf{B_{12}}$ = $- x_{5} \, \mathbf{a}_{1}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{5} - y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (6g) O II

References

  • L. Vegard and A. Maurstad, Die Kristallstruktur der wasserfreien Alaune R'R(S0$_{4}$)$_{2}$, Z. Kristallogr. 69, 519–532 (1929), doi:10.1524/zkri.1929.69.1.519.
  • L. Vegard and A. Maurstad, Die Kristallstruktur der wasserfreien Alaune R'R(S0$_{4}$)$_{2}$, Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo pp. 1–24 (1928).
  • D. V. West, Q. Huang, H. W. Zandbergen, T. M. McQueen, and R. J. Cava, Structural disorder, octahedral coordination and two-dimensional ferromagnetism in anhydrous alums, J. Solid State Chem. 181, 2768–2775 (2008), doi:10.1016/j.jssc.2008.07.006.
  • M. N. Murashko, I. V. Pekov, S. V. Krivovichev, A. P. Chernyatyeva, V. O. Yapaskurt, A. E. Zadov, and M. E. Zelensky, Steklite, KAl(SO$_{4}$)$_{2}$: A finding at the Tolbachik Volcano, Kamchatka, Russia, validating its status as a mineral species and crystal structure, Geol. Ore Deposits 55, 594–600 (2013), doi:10.1134/S1075701513070088.
  • P. Villars, KAl(SO4)2 (KAl[SO4]2 trig1) Crystal Structure (2016). PAULING FILE in: Inorganic Solid Phases, SpringerMaterials (online database).
  • J. M. Manoli, P. Herpin, and G. Pannetier, Structure cristalline du sulfate double d'aluminium et de potassium, Bull. Soc. Chim. Frace pp. 98–101 (1970).

Found in

  • P. P. Ewald and C. Hermann, eds., Strukturbericht 1913-1928 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1931).
  • C. Hermann, O. Lohrmann, and H. Philipp, eds., Strukturbericht Band II 1928-1932 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).
  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Prototype Generator

aflow --proto=ABC8D2_hP12_150_a_b_dg_d --params=$a,c/a,z_{3},z_{4},x_{5},y_{5},z_{5}$

Species:

Running:

Output: