Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC4D_hP14_156_ac_bc_ab2d_ab-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/Z1Y1
or https://aflow.org/p/ABC4D_hP14_156_ac_bc_ab2d_ab-001
or PDF Version

KNaSO$_{4}$ Structure: ABC4D_hP14_156_ac_bc_ab2d_ab-001

Picture of Structure; Click for Big Picture
Prototype KNaO$_{4}$S
AFLOW prototype label ABC4D_hP14_156_ac_bc_ab2d_ab-001
ICSD 133733
Pearson symbol hP14
Space group number 156
Space group symbol $P3m1$
AFLOW prototype command aflow --proto=ABC4D_hP14_156_ac_bc_ab2d_ab-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}$

  • We have shifted the origin so that the atom (Okada, 1980) label K(2) is at the origin. Note that space group $P3m1$ #156 allows an arbitrary origin for the $z$-axis. In addition, the origin can be shifted so that (1b) or (1c) atoms are moved to the origin.
  • There is no ICSD for the (Okada, 1980) structure of KNaSO$_{4}$, although the ICSD has entries for K$_{3}$Na(SO$_{4}$)$_{2}$ from the same paper. We provide the ICSD entry from the later work of (Filatov, 2019), who named the mineral form belomarinaite.
  • Belomarinaite has some mixture of sodium and potassium on the (1a) and (1c) sites that was not reported by (Okada, 1980).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (1a) K I
$\mathbf{B_{2}}$ = $z_{2} \, \mathbf{a}_{3}$ = $c z_{2} \,\mathbf{\hat{z}}$ (1a) O I
$\mathbf{B_{3}}$ = $z_{3} \, \mathbf{a}_{3}$ = $c z_{3} \,\mathbf{\hat{z}}$ (1a) S I
$\mathbf{B_{4}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (1b) Na I
$\mathbf{B_{5}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (1b) O II
$\mathbf{B_{6}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (1b) S II
$\mathbf{B_{7}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (1c) K II
$\mathbf{B_{8}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (1c) Na II
$\mathbf{B_{9}}$ = $x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (3d) O III
$\mathbf{B_{10}}$ = $x_{9} \, \mathbf{a}_{1}+2 x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{9} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (3d) O III
$\mathbf{B_{11}}$ = $- 2 x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{9} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (3d) O III
$\mathbf{B_{12}}$ = $x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (3d) O IV
$\mathbf{B_{13}}$ = $x_{10} \, \mathbf{a}_{1}+2 x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{10} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (3d) O IV
$\mathbf{B_{14}}$ = $- 2 x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{10} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (3d) O IV

References

  • K. Okada and J. Ossaka, Structures of potassium sodium sulphate and tripotassium sodium disulphate, Acta Crystallogr. Sect. B 36, 919–921 (1980), doi:10.1107/S0567740880004852.
  • S. K. Filatov, A. P. Shablinskii, L. P. Vergasova, O. U. Saprikina, R. S. Bubnova, S. V. Moskaleva, and A. B. Belousov, Belomarinaite KNa(SO$_{4}$): A new sulfate from 2012–2013 Tolbachik Fissure eruption, Kamchatka Peninsula, Russia, Mineral. Mag. 81, 569–578 (2019), doi:10.1180/mgm.2018.170.

Found in

  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Prototype Generator

aflow --proto=ABC4D_hP14_156_ac_bc_ab2d_ab --params=$a,c/a,z_{1},z_{2},z_{3},z_{4},z_{5},z_{6},z_{7},z_{8},x_{9},z_{9},x_{10},z_{10}$

Species:

Running:

Output: