Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC2_hR4_160_a_a_2a-003

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/BC9T
or https://aflow.org/p/ABC2_hR4_160_a_a_2a-003
or PDF Version

CrCuS$_{2}$ Structure: ABC2_hR4_160_a_a_2a-003

Picture of Structure; Click for Big Picture
Prototype CrCuS$_{2}$
AFLOW prototype label ABC2_hR4_160_a_a_2a-003
ICSD 25627
Pearson symbol hR4
Space group number 160
Space group symbol $R3m$
AFLOW prototype command aflow --proto=ABC2_hR4_160_a_a_2a-003
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}$

Other compounds with this structure

AgCuS$_{2}$,  AgCuSe$_{2}$,  AuCrS$_{2}$,  CrCuSe$_{2}$,  CrMoN$_{2}$


  • Space group $R3m$ #160 does not specify the origin of the $z$-axis. Here we choose $z_{I} = 0$ for the position of the chromium atom.
  • $\alpha$–CrOOH and CrCuS$_{2}$ have the AFLOW prototype label, ABC2_hR4_160_a_a_2a. They are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files.
  • Hexagonal settings of this structure can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $c x_{1} \,\mathbf{\hat{z}}$ (1a) Cr I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $c x_{2} \,\mathbf{\hat{z}}$ (1a) Cu I
$\mathbf{B_{3}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $c x_{3} \,\mathbf{\hat{z}}$ (1a) S I
$\mathbf{B_{4}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $c x_{4} \,\mathbf{\hat{z}}$ (1a) S II

References

  • H. Hahn and C. de Lorent, Untersuchungen über ternäre Chalkogenide. XII. Über ternäre Chalkogenide des Chroms mit einwertigem Kupfer und Silber, Z. Anorganische und Allgemeine Chemie 290, 68–81 (1957), doi:10.1002/zaac.19572900108.

Found in

  • W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Volume 2, International Series of Monographs on Metal Physics and Physical Metallurgy, vol. 8 (Pergamon Press, Oxford, London, Edinburgh, New York, Toronto, Sydney, Paris, Braunschweig, 1967).

Prototype Generator

aflow --proto=ABC2_hR4_160_a_a_2a --params=$a,c/a,x_{1},x_{2},x_{3},x_{4}$

Species:

Running:

Output: