Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB6CD_hP9_149_a_l_d_e-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/63FP
or https://aflow.org/p/AB6CD_hP9_149_a_l_d_e-001
or PDF Version

PbMnTeO$_{6}$ Structure: AB6CD_hP9_149_a_l_d_e-001

Picture of Structure; Click for Big Picture
Prototype MnO$_{6}$PbTe
AFLOW prototype label AB6CD_hP9_149_a_l_d_e-001
ICSD 5923
Pearson symbol hP9
Space group number 149
Space group symbol $P312$
AFLOW prototype command aflow --proto=AB6CD_hP9_149_a_l_d_e-001
--params=$a, \allowbreak c/a, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}$

Other compounds with this structure

BaGeTeO$_{6}$,  NaNiIO$_{6}$,  PbGeTeO$_{6}$,  SrGeTeO$_{6}$,  SrMnTeO$_{6}$


  • In the sample studied by (Kuchugura, 2019) the site we have labeled Mn (1f) is actually 90.6% manganese and 9.4% tellurium, while the Te (1d) site is 90.6% tellurium and 9.4% manganese.
  • The mineral kuranakhite (Xinchun, 1998) also has this composition. While it was tentatively indexed as a body-centered orthorhombic structure, its lattice constants are very close to the trigonal structure described here, indicating that this may be the structure of kuranakhite.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Mn I
$\mathbf{B_{2}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (1d) Pb I
$\mathbf{B_{3}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ (1e) Te I
$\mathbf{B_{4}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (6l) O I
$\mathbf{B_{5}}$ = $- y_{4} \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - 2 y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (6l) O I
$\mathbf{B_{6}}$ = $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (6l) O I
$\mathbf{B_{7}}$ = $- y_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (6l) O I
$\mathbf{B_{8}}$ = $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{4} + 2 y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (6l) O I
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (6l) O I

References

  • M. D. Kuchugura, A. I. Kurbakov, E. A. Zvereva, T. M. Vasilchikova, G. V. Raganyan, A. N. Vasiliev, V. A. Barchukf, and V. B. Nalbandyan, PbMnTeO$_{6}$: a chiral quasi 2D magnet with all cations in octahedral coordination and the space group problem of trigonal layered A$^{2+}$M$^{4+}$TeO$^{6}$, Dalton Trans. 48, 17070–17077 (2019), doi:10.1039/c9dt03154e.
  • Z. Xinchun, L. Liang, W. Shizhong, W. Yan, Y. Jiankun, G. Nenglin, L. Guanghui, and H. Jianmin, Kuranakhite discovered in China for the first time, Chinese J. Geochem. 17, 77–80 (1998), doi:10.1007/BF02834625.

Prototype Generator

aflow --proto=AB6CD_hP9_149_a_l_d_e --params=$a,c/a,x_{4},y_{4},z_{4}$

Species:

Running:

Output: