AFLOW Prototype: AB5_hP6_191_a_cg-001
This structure originally had the label AB5_hP6_191_a_cg. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/F7Y6
or
https://aflow.org/p/AB5_hP6_191_a_cg-001
or
PDF Version
Prototype | CaCu$_{5}$ |
AFLOW prototype label | AB5_hP6_191_a_cg-001 |
Strukturbericht designation | $D2_{d}$ |
ICSD | 58882 |
Pearson symbol | hP6 |
Space group number | 191 |
Space group symbol | $P6/mmm$ |
AFLOW prototype command |
aflow --proto=AB5_hP6_191_a_cg-001
--params=$a, \allowbreak c/a$ |
BaAg$_{5}$, BaAu$_{5}$, BaPt$_{5}$, CaNi$_{5}$, CaPt$_{5}$, CaZn$_{5}$, CeCo$_{5}$, CeCu$_{5}$, CeFe$_{5}$, CeNi$_{5}$, CePt$_{5}$, CeZn$_{5}$, DyCo$_{5}$, DyFe$_{5}$, DyNi$_{5}$, ErCo$_{5}$, ErNi$_{5}$, GdCo$_{5}$, GdCu$_{5}$, GdFe$_{5}$, GdNi$_{5}$, HfBe$_{5}$, HoCo$_{5}$, HoCu$_{5}$, HoNi$_{5}$, KAu$_{5}$, LaCo$_{5}$, LaCu$_{5}$, LaNi$_{5}$, LaPt$_{5}$, LaZn$_{5}$, NdCo$_{5}$, NdCu$_{5}$, NdNi$_{5}$, NdPt$_{5}$, PrCo$_{5}$, PrCu$_{5}$, PrNi$_{5}$, PrPt$_{5}$, PrSr$_{5}$, PuNi$_{5}$, RbAu$_{5}$, ScBe$_{5}$, SmCo$_{5}$, SmCu$_{5}$, SmFe$_{5}$, SmNi$_{5}$, SrAg$_{5}$, SrAu$_{5}$, SrPd$_{5}$, TbCo$_{5}$, TbCu$_{5}$, TbNi$_{5}$, ThCo$_{5}$, ThFe$_{5}$, ThNi$_{5}$, YCo$_{5}$, YCu$_{5}$, YFe$_{5}$, YNi$_{5}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Ca I |
$\mathbf{B_{2}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ | (2c) | Cu I |
$\mathbf{B_{3}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ | (2c) | Cu I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3g) | Cu II |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3g) | Cu II |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3g) | Cu II |