Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB5C3_hP9_191_b_ah_f-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/F3TR
or https://aflow.org/p/AB5C3_hP9_191_b_ah_f-001
or PDF Version

KV$_{3}$Sb$_{5}$ Structure: AB5C3_hP9_191_b_ah_f-001

Picture of Structure; Click for Big Picture
Prototype KSb$_{5}$V$_{3}$
AFLOW prototype label AB5C3_hP9_191_b_ah_f-001
ICSD 31838
Pearson symbol hP9
Space group number 191
Space group symbol $P6/mmm$
AFLOW prototype command aflow --proto=AB5C3_hP9_191_b_ah_f-001
--params=$a, \allowbreak c/a, \allowbreak z_{4}$

Other compounds with this structure

CsTi$_{3}$Bi$_{5}$,  CsV$_{3}$Sb$_{5}$,  RbV$_{3}$Sb$_{5}$


  • (Ortiz, 2019) found that their KV$_{3}$Sb$_{5}$ samples were potassium deficient, with 8-15% vacancies on the (1a) potassium site. Both CsV$_{3}$Sb$_{5}$ and RbV$_{3}$Sb$_{5}$ were stoichiometric.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Sb I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (1b) K I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ (3f) V I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ (3f) V I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (3f) V I
$\mathbf{B_{6}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4h) Sb II
$\mathbf{B_{7}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4h) Sb II
$\mathbf{B_{8}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (4h) Sb II
$\mathbf{B_{9}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (4h) Sb II

References

  • B. R. Ortiz, L. C. Gomes, J. R. Morey, M. Winiarski, M. Bordelon, J. S. Mangum, I. W. H. Oswald, J. A. Rodriguez-Rivera, J. R. Neilson, S. D. Wilson, E. Ertekin, T. M. McQueen, and E. S. Toberer, New kagome prototype materials: discovery of KV$_{3}$Sb$_{5}$,RbV$_{3}$Sb$_{5}$, and CsV$_{3}$Sb$_{5}$, Phys. Rev. Materials 3, 094407 (2019), doi:10.1103/PhysRevMaterials.3.094407.

Found in

  • B. R. Ortiz, S. M. L. Teicher, Y. Hu, J. L. Zuo, P. M. Sarte, E. C. Schueller, A. M. M. Abeykoon, M. J. Krogstad, S. Rosenkranz, R. Osborn, R. Seshadri, L. Balents, J. He, and S. D. Wilson, CsV$_{3}$Sb$_{5}$: a $Z_{2}$ topological kagome metal with a superconducting ground state, Phys. Rev. Lett. 125, 247002 (2020), doi:10.1103/PhysRevLett.125.247002.

Prototype Generator

aflow --proto=AB5C3_hP9_191_b_ah_f --params=$a,c/a,z_{4}$

Species:

Running:

Output: