Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB4C_hP6_191_a_h_b-001

This structure originally had the label AB4C_hP6_191_a_h_b. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/PDN7
or https://aflow.org/p/AB4C_hP6_191_a_h_b-001
or PDF Version

AlB$_{4}$Mg Structure: AB4C_hP6_191_a_h_b-001

Picture of Structure; Click for Big Picture
Prototype AlB$_{4}$Mg
AFLOW prototype label AB4C_hP6_191_a_h_b-001
ICSD 97224
Pearson symbol hP6
Space group number 191
Space group symbol $P6/mmm$
AFLOW prototype command aflow --proto=AB4C_hP6_191_a_h_b-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}$

  • Note that Table I of (Margadonna, 2002) mislabels the (1a) and (1b) Wyckoff positions.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Al I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (1b) Mg I
$\mathbf{B_{3}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4h) B I
$\mathbf{B_{4}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4h) B I
$\mathbf{B_{5}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (4h) B I
$\mathbf{B_{6}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (4h) B I

References

  • S. Margadonna, K. Prassides, I. Arvanitidis, M. Pissas, G. Papavassiliou, and A. N. Fitch, Crystal structure of the Mg$_{1-x}$Al$_x$B$_2$ superconductors near $x \approx 0.5$, Phys. Rev. B 66, 014518 (2002), doi:10.1103/PhysRevB.66.014518.

Prototype Generator

aflow --proto=AB4C_hP6_191_a_h_b --params=$a,c/a,z_{3}$

Species:

Running:

Output: