Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB4C_hP18_180_c_k_d-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/QL18
or https://aflow.org/p/AB4C_hP18_180_c_k_d-001
or PDF Version

Rhadophane (CePO$_{4}$) Structure: AB4C_hP18_180_c_k_d-001

Picture of Structure; Click for Big Picture
Prototype CeO$_{4}$P
AFLOW prototype label AB4C_hP18_180_c_k_d-001
Mineral name rhadophane
ICSD 31563
Pearson symbol hP18
Space group number 180
Space group symbol $P6_222$
AFLOW prototype command aflow --proto=AB4C_hP18_180_c_k_d-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}$

Other compounds with this structure

LaPO$_{4}$,  NdPO$_{4}$


  • This structure can also be found in the enantiomorphic space group $P6_{4}22$ #181.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ (3c) Ce I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ (3c) Ce I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (3c) Ce I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3d) P I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{6} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ (3d) P I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{5}{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{5}{6}c \,\mathbf{\hat{z}}$ (3d) P I
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} + y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (12k) O I
$\mathbf{B_{8}}$ = $- y_{3} \, \mathbf{a}_{1}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - 2 y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{3} + 2\right) \,\mathbf{\hat{z}}$ (12k) O I
$\mathbf{B_{9}}$ = $- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{3} - y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (12k) O I
$\mathbf{B_{10}}$ = $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{3} + y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (12k) O I
$\mathbf{B_{11}}$ = $y_{3} \, \mathbf{a}_{1}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{3} + 2 y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{3} + 2\right) \,\mathbf{\hat{z}}$ (12k) O I
$\mathbf{B_{12}}$ = $\left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{3} - y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (12k) O I
$\mathbf{B_{13}}$ = $y_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- \left(z_{3} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} + y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{3} - 2\right) \,\mathbf{\hat{z}}$ (12k) O I
$\mathbf{B_{14}}$ = $\left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - 2 y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (12k) O I
$\mathbf{B_{15}}$ = $- x_{3} \, \mathbf{a}_{1}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{3} - y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{3} \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (12k) O I
$\mathbf{B_{16}}$ = $- y_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- \left(z_{3} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{3} + y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{3} - 2\right) \,\mathbf{\hat{z}}$ (12k) O I
$\mathbf{B_{17}}$ = $- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{3} + 2 y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (12k) O I
$\mathbf{B_{18}}$ = $x_{3} \, \mathbf{a}_{1}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{3} - y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{3} \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (12k) O I

References

  • R. C. L. Mooney, X-ray diffraction study of cerous phosphate and related crystals. I. Hexagonal modification, Acta Cryst. 3, 337–340 (1950), doi:10.1107/S0365110X50000963.

Found in

  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Prototype Generator

aflow --proto=AB4C_hP18_180_c_k_d --params=$a,c/a,x_{3},y_{3},z_{3}$

Species:

Running:

Output: