AFLOW Prototype: AB4C2_hR28_166_2c_2c2h_abh-001
This structure originally had the label AB4C2_hR28_166_2c_2c2h_abh. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/8BYU
or
https://aflow.org/p/AB4C2_hR28_166_2c_2c2h_abh-001
or
PDF Version
Prototype | CuS$_{4}$Ti$_{2}$ |
AFLOW prototype label | AB4C2_hR28_166_2c_2c2h_abh-001 |
ICSD | 170228 |
Pearson symbol | hR28 |
Space group number | 166 |
Space group symbol | $R\overline{3}m$ |
AFLOW prototype command |
aflow --proto=AB4C2_hR28_166_2c_2c2h_abh-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Ti I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (1b) | Ti II |
$\mathbf{B_{3}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $c x_{3} \,\mathbf{\hat{z}}$ | (2c) | Cu I |
$\mathbf{B_{4}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- c x_{3} \,\mathbf{\hat{z}}$ | (2c) | Cu I |
$\mathbf{B_{5}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $c x_{4} \,\mathbf{\hat{z}}$ | (2c) | Cu II |
$\mathbf{B_{6}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $- c x_{4} \,\mathbf{\hat{z}}$ | (2c) | Cu II |
$\mathbf{B_{7}}$ | = | $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ | = | $c x_{5} \,\mathbf{\hat{z}}$ | (2c) | S I |
$\mathbf{B_{8}}$ | = | $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ | = | $- c x_{5} \,\mathbf{\hat{z}}$ | (2c) | S I |
$\mathbf{B_{9}}$ | = | $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ | = | $c x_{6} \,\mathbf{\hat{z}}$ | (2c) | S II |
$\mathbf{B_{10}}$ | = | $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ | = | $- c x_{6} \,\mathbf{\hat{z}}$ | (2c) | S II |
$\mathbf{B_{11}}$ | = | $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ | (6h) | S III |
$\mathbf{B_{12}}$ | = | $z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ | (6h) | S III |
$\mathbf{B_{13}}$ | = | $x_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ | = | $- \frac{1}{\sqrt{3}}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ | (6h) | S III |
$\mathbf{B_{14}}$ | = | $- z_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ | (6h) | S III |
$\mathbf{B_{15}}$ | = | $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ | (6h) | S III |
$\mathbf{B_{16}}$ | = | $- x_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{\sqrt{3}}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ | (6h) | S III |
$\mathbf{B_{17}}$ | = | $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ | (6h) | S IV |
$\mathbf{B_{18}}$ | = | $z_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ | (6h) | S IV |
$\mathbf{B_{19}}$ | = | $x_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ | = | $- \frac{1}{\sqrt{3}}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ | (6h) | S IV |
$\mathbf{B_{20}}$ | = | $- z_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ | (6h) | S IV |
$\mathbf{B_{21}}$ | = | $- x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ | (6h) | S IV |
$\mathbf{B_{22}}$ | = | $- x_{8} \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{\sqrt{3}}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ | (6h) | S IV |
$\mathbf{B_{23}}$ | = | $x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ | (6h) | Ti III |
$\mathbf{B_{24}}$ | = | $z_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ | (6h) | Ti III |
$\mathbf{B_{25}}$ | = | $x_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ | = | $- \frac{1}{\sqrt{3}}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ | (6h) | Ti III |
$\mathbf{B_{26}}$ | = | $- z_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ | (6h) | Ti III |
$\mathbf{B_{27}}$ | = | $- x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ | (6h) | Ti III |
$\mathbf{B_{28}}$ | = | $- x_{9} \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ | = | $\frac{1}{\sqrt{3}}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ | (6h) | Ti III |