AFLOW Prototype: AB3C_hP30_150_ef_3g_c2d-001
This structure originally had the label AB3C_hP30_150_ef_3g_c2d. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/YVPA
or
https://aflow.org/p/AB3C_hP30_150_ef_3g_c2d-001
or
PDF Version
Prototype | KO$_{3}$S |
AFLOW prototype label | AB3C_hP30_150_ef_3g_c2d-001 |
Strukturbericht designation | $K1_{1}$ |
ICSD | 27580 |
Pearson symbol | hP30 |
Space group number | 150 |
Space group symbol | $P321$ |
AFLOW prototype command |
aflow --proto=AB3C_hP30_150_ef_3g_c2d-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}$ |
RbSO$_{3}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $z_{1} \, \mathbf{a}_{3}$ | = | $c z_{1} \,\mathbf{\hat{z}}$ | (2c) | S I |
$\mathbf{B_{2}}$ | = | $- z_{1} \, \mathbf{a}_{3}$ | = | $- c z_{1} \,\mathbf{\hat{z}}$ | (2c) | S I |
$\mathbf{B_{3}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (2d) | S II |
$\mathbf{B_{4}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (2d) | S II |
$\mathbf{B_{5}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (2d) | S III |
$\mathbf{B_{6}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (2d) | S III |
$\mathbf{B_{7}}$ | = | $x_{4} \, \mathbf{a}_{1}$ | = | $\frac{1}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}$ | (3e) | K I |
$\mathbf{B_{8}}$ | = | $x_{4} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}$ | (3e) | K I |
$\mathbf{B_{9}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ | = | $- a x_{4} \,\mathbf{\hat{x}}$ | (3e) | K I |
$\mathbf{B_{10}}$ | = | $x_{5} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{5} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3f) | K II |
$\mathbf{B_{11}}$ | = | $x_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{5} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3f) | K II |
$\mathbf{B_{12}}$ | = | $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3f) | K II |
$\mathbf{B_{13}}$ | = | $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (6g) | O I |
$\mathbf{B_{14}}$ | = | $- y_{6} \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{6} - 2 y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (6g) | O I |
$\mathbf{B_{15}}$ | = | $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (6g) | O I |
$\mathbf{B_{16}}$ | = | $y_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (6g) | O I |
$\mathbf{B_{17}}$ | = | $\left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{6} - 2 y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (6g) | O I |
$\mathbf{B_{18}}$ | = | $- x_{6} \, \mathbf{a}_{1}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (6g) | O I |
$\mathbf{B_{19}}$ | = | $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{7} + y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (6g) | O II |
$\mathbf{B_{20}}$ | = | $- y_{7} \, \mathbf{a}_{1}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{7} - 2 y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (6g) | O II |
$\mathbf{B_{21}}$ | = | $- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{7} - y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (6g) | O II |
$\mathbf{B_{22}}$ | = | $y_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{7} + y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (6g) | O II |
$\mathbf{B_{23}}$ | = | $\left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{7} - 2 y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (6g) | O II |
$\mathbf{B_{24}}$ | = | $- x_{7} \, \mathbf{a}_{1}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{7} - y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (6g) | O II |
$\mathbf{B_{25}}$ | = | $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{8} + y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (6g) | O III |
$\mathbf{B_{26}}$ | = | $- y_{8} \, \mathbf{a}_{1}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{8} - 2 y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (6g) | O III |
$\mathbf{B_{27}}$ | = | $- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{8} - y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (6g) | O III |
$\mathbf{B_{28}}$ | = | $y_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{8} + y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (6g) | O III |
$\mathbf{B_{29}}$ | = | $\left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{8} - 2 y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (6g) | O III |
$\mathbf{B_{30}}$ | = | $- x_{8} \, \mathbf{a}_{1}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{8} - y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (6g) | O III |