AFLOW Prototype: AB2_hP3_164_a_d-001
This structure originally had the label AB2_hP3_164_a_d. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/32EZ
or
https://aflow.org/p/AB2_hP3_164_a_d-001
or
PDF Version
Prototype | CdI$_{2}$ |
AFLOW prototype label | AB2_hP3_164_a_d-001 |
Strukturbericht designation | $C6$ |
ICSD | 53983 |
Pearson symbol | hP3 |
Space group number | 164 |
Space group symbol | $P\overline{3}m1$ |
AFLOW prototype command |
aflow --proto=AB2_hP3_164_a_d-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}$ |
Ti, Zr, Hf, ZrNb, TiNb, TiV, $\alpha$-W$_{2}$C, Cd$_{2}$Ce, Cd$_{2}$La, Cd$_{2}$Pr, Cd$_{2}$Y, Cl$_{2}$Fe (HP), Ge$_{2}$Eu, $\gamma$-I$_{2}$Hg, S$_{2}$Hf, S$_{2}$Pt, S$_{2}$Sn (berndtite), S$_{2}$Ta, S$_{2}$Ti, S$_{2}$Zr, Se$_{2}$Hf, Se$_{2}$Pt, Se$_{2}$Sn, Se$_{2}$Ti, Se$_{2}$V, Se$_{2}$Zr, Te$_{2}$Co, Te$_{2}$Ir, Te$_{2}$Pd, Te$_{2}$Rh, Te$_{2}$Ti, Te$_{2}$V, Te$_{2}$Zn, Te$_{2}$Zr, NiSeTe, PdSeTe, SSeSn, (OH)$_{2}$Cd
${\mathbf c/a}$ | ${\mathbf z}$ | Lattice |
Arbitrary | $\frac12$ | Ideal Omega ($C32$) |
$\sqrt{\frac38}$ | $\frac16$ | Body-Centered Cubic ($A2$) |
$\sqrt{\frac32}$ | $\frac16$ | Simple Cubic ($A_{h}$) |
$\sqrt{6}$ | $\frac16$ | Face-Centered Cubic ($A1$) |
Arbitrary | 0 | Simple Hexagonal Structure ($A_{f}$) |
$\omega$label comes from $\omega$–CrTi, (Ewald, 1931) lists the prototype for Strukturbericht designation $C6$ as CdI$_{2}$.
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Cd I |
$\mathbf{B_{2}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (2d) | I I |
$\mathbf{B_{3}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (2d) | I I |