Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A7B2_hP9_164_ac2d_d-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/FCSA
or https://aflow.org/p/A7B2_hP9_164_ac2d_d-001
or PDF Version

Li$_{7}$Pb$_{2}$ Structure: A7B2_hP9_164_ac2d_d-001

Picture of Structure; Click for Big Picture
Prototype Li$_{7}$Pb$_{2}$
AFLOW prototype label A7B2_hP9_164_ac2d_d-001
ICSD 104765
Pearson symbol hP9
Space group number 164
Space group symbol $P\overline{3}m1$
AFLOW prototype command aflow --proto=A7B2_hP9_164_ac2d_d-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}$

  • (Zalkin, 1956) put this structure in space group $P321$ #150, however the occupied Wyckoff positions are duplicated in the higher symmetry space group $P\overline{3}m1$ #164. Accordingly we use the higher symmetry space group.
  • (Cenzual, 1991) note that the coordinate $z_{3}$ of the Li-III atom should be -1/12 rather than -1/2 as given in (Zalkin, 1956). This agrees with the figures in the original reference so we use that value.
  • The ICSD entry is from (Zalkin, 1956).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Li I
$\mathbf{B_{2}}$ = $z_{2} \, \mathbf{a}_{3}$ = $c z_{2} \,\mathbf{\hat{z}}$ (2c) Li II
$\mathbf{B_{3}}$ = $- z_{2} \, \mathbf{a}_{3}$ = $- c z_{2} \,\mathbf{\hat{z}}$ (2c) Li II
$\mathbf{B_{4}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (2d) Li III
$\mathbf{B_{5}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (2d) Li III
$\mathbf{B_{6}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (2d) Li IV
$\mathbf{B_{7}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (2d) Li IV
$\mathbf{B_{8}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (2d) Pb I
$\mathbf{B_{9}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (2d) Pb I

References

  • A. Zalkin and W. J. Ramsey, Intermetallic Compounds between Lithium and Lead. I. The Structures of Li$_{3}$Pb and Li$_{7}$Pb$_{2}$, J. Phys. Chem. 60, 234–236 (1956), doi:10.1021/j150536a022.
  • K. Cenzual, L. M. Gelato, M. Penzo, and E. Parthé, Inorganic structure types with revised space groups. I, Acta Crystallogr. Sect. B 47, 433–439 (1991), doi:10.1107/S0108768191000903.

Found in

  • J. Hauck and K. Mika, Architecture of crystal structures from square planes, Acta Crystallogr. Sect. B 56, 750–765 (2000), doi:10.1107/S0108768100006480.

Prototype Generator

aflow --proto=A7B2_hP9_164_ac2d_d --params=$a,c/a,z_{2},z_{3},z_{4},z_{5}$

Species:

Running:

Output: