Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A6B6C_hP13_191_i_cde_a-002

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/4E59
or https://aflow.org/p/A6B6C_hP13_191_i_cde_a-002
or PDF Version

HfFe$_{6}$Ge$_{6}$ Structure: A6B6C_hP13_191_i_cde_a-002

Picture of Structure; Click for Big Picture
Prototype Fe$_{6}$Ge$_{6}$Hf
AFLOW prototype label A6B6C_hP13_191_i_cde_a-002
ICSD 632038
Pearson symbol hP13
Space group number 191
Space group symbol $P6/mmm$
AFLOW prototype command aflow --proto=A6B6C_hP13_191_i_cde_a-002
--params=$a, \allowbreak c/a, \allowbreak z_{4}, \allowbreak z_{5}$

Other compounds with this structure

DyCr$_{6}$Ge$_{6}$,  DyFe$_{6}$Ge$_{6}$,  DyMn$_{6}$Ge$_{6}$,  ErCr$_{6}$Ge$_{6}$,  GdFe$_{6}$Ge$_{6}$,  GdMn$_{6}$Ge$_{6}$,  HfFe$_{6}$Ge$_{6}$,  HoCr$_{6}$Ge$_{6}$,  HoFe$_{6}$Ge$_{6}$,  HoMn$_{6}$Ge$_{6}$,  LuFe$_{6}$Ge$_{6}$,  LuMn$_{6}$Ge$_{6}$,  MgCo$_{6}$Ge$_{6}$,  MgFe$_{6}$Ge$_{6}$,  NbFe$_{6}$Ge$_{6}$,  NdMn$_{6}$Ge$_{6}$,  ScFe$_{6}$Ge$_{6}$,  ScMn$_{6}$Ge$_{6}$,  ScMn$_{6}$Sn$_{6}$,  TbCr$_{6}$Ge$_{6}$,  TbFe$_{6}$Ge$_{6}$,  TbMn$_{6}$Ge$_{6}$,  TbMn$_{6}$Sn$_{6}$,  TiFe$_{6}$Ge$_{6}$,  TmFe$_{6}$Ge$_{6}$,  TmMn$_{6}$Ge$_{6}$,  YCr$_{6}$Ge$_{6}$,  YFe$_{6}$Ge$_{6}$,  YMn$_{6}$Sn$_{6}$,  YbFe$_{6}$Ge$_{6}$,  YbMn$_{6}$Ge$_{6}$,  ZrFe$_{6}$Ge$_{6}$,  DyFe$_{6}$Sn$_{4}$Ge$_{2}$,  ErFe$_{6}$Sn$_{4}$Ge$_{2}$,  GdFe$_{6}$Sn$_{4}$Ge$_{2}$,  HoFe$_{6}$Sn$_{4}$Ge$_{2}$,  TbFe$_{6}$Sn$_{4}$Ge$_{2}$,  YFe$_{6}$Sn$_{4}$Ge$_{2}$


  • (Zyubrik, 1982) originally determined the structure of HfFe$_{6}$Ge$_{6}$. While we do not have a copy of this paper, we were able to extract the data from the ICSD entry.
  • This structure is related to the $D2_{a}$ TiBe$_{12}$ structure. That structure, however, is probably not the actual TiBe$_{12}$ structure, so we designate HfFe$_{6}$Ge$_{6}$ as the prototype for the ternary form.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Hf I
$\mathbf{B_{2}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ (2c) Ge I
$\mathbf{B_{3}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ (2c) Ge I
$\mathbf{B_{4}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2d) Ge II
$\mathbf{B_{5}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2d) Ge II
$\mathbf{B_{6}}$ = $z_{4} \, \mathbf{a}_{3}$ = $c z_{4} \,\mathbf{\hat{z}}$ (2e) Ge III
$\mathbf{B_{7}}$ = $- z_{4} \, \mathbf{a}_{3}$ = $- c z_{4} \,\mathbf{\hat{z}}$ (2e) Ge III
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (6i) Fe I
$\mathbf{B_{9}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (6i) Fe I
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{5} \,\mathbf{\hat{z}}$ (6i) Fe I
$\mathbf{B_{11}}$ = $\frac{1}{2} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (6i) Fe I
$\mathbf{B_{12}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (6i) Fe I
$\mathbf{B_{13}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{5} \,\mathbf{\hat{z}}$ (6i) Fe I

References

  • A. A. Zyubrik, R. R. Olenych, I. A. Mizak, and Y. P. Yarmolyuk, The (titanium, hafnium)-iron-germanium systems, Dopov. Akad. Nauk Ukr. RSR A 44, 78–81 (1982).

Found in

  • T. Mazet, O. Isnard, and B. Malaman, Neutron diffraction and $^{57}$Fe Mössbauer study of the HfFe$_{6}$Ge$_{6}$-type RFe$_{6}$Ge$_{6}$ compounds (R=Sc, Ti, Zr, Hf, Nb), Solid State Commun. 114, 91–96 (2000), doi:10.1016/S0038-1098(00)00003-X.

Prototype Generator

aflow --proto=A6B6C_hP13_191_i_cde_a --params=$a,c/a,z_{4},z_{5}$

Species:

Running:

Output: