AFLOW Prototype: A6B3C2_hR11_166_3c_ac_c-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/T8T4
or
https://aflow.org/p/A6B3C2_hR11_166_3c_ac_c-001
or
PDF Version
Prototype | Al$_{6}$C$_{3}$N$_{2}$ |
AFLOW prototype label | A6B3C2_hR11_166_3c_ac_c-001 |
ICSD | 654993, 41260 |
Pearson symbol | hR11 |
Space group number | 166 |
Space group symbol | $R\overline{3}m$ |
AFLOW prototype command |
aflow --proto=A6B3C2_hR11_166_3c_ac_c-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}$ |
--hex
. Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | C I |
$\mathbf{B_{2}}$ | = | $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ | = | $c x_{2} \,\mathbf{\hat{z}}$ | (2c) | Al I |
$\mathbf{B_{3}}$ | = | $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ | = | $- c x_{2} \,\mathbf{\hat{z}}$ | (2c) | Al I |
$\mathbf{B_{4}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $c x_{3} \,\mathbf{\hat{z}}$ | (2c) | Al II |
$\mathbf{B_{5}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- c x_{3} \,\mathbf{\hat{z}}$ | (2c) | Al II |
$\mathbf{B_{6}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $c x_{4} \,\mathbf{\hat{z}}$ | (2c) | Al III |
$\mathbf{B_{7}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $- c x_{4} \,\mathbf{\hat{z}}$ | (2c) | Al III |
$\mathbf{B_{8}}$ | = | $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ | = | $c x_{5} \,\mathbf{\hat{z}}$ | (2c) | C II |
$\mathbf{B_{9}}$ | = | $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ | = | $- c x_{5} \,\mathbf{\hat{z}}$ | (2c) | C II |
$\mathbf{B_{10}}$ | = | $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ | = | $c x_{6} \,\mathbf{\hat{z}}$ | (2c) | N I |
$\mathbf{B_{11}}$ | = | $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ | = | $- c x_{6} \,\mathbf{\hat{z}}$ | (2c) | N I |
intermetallicstructure types, J. Alloys Compd. 197, 243–269 (1993), doi:10.1016/0925-8388(93)90046-P.