Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A5B6C2_hP13_157_2ac_2c_b-001

This structure originally had the label A5B6C2_hP13_157_2ac_2c_b. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/1YM0
or https://aflow.org/p/A5B6C2_hP13_157_2ac_2c_b-001
or PDF Version

Ag$_{5}$Pb$_{2}$O$_{6}$ Structure: A5B6C2_hP13_157_2ac_2c_b-001

Picture of Structure; Click for Big Picture
Prototype Ag$_{5}$O$_{6}$Pb$_{2}$
AFLOW prototype label A5B6C2_hP13_157_2ac_2c_b-001
ICSD 24038
Pearson symbol hP13
Space group number 157
Space group symbol $P31m$
AFLOW prototype command aflow --proto=A5B6C2_hP13_157_2ac_2c_b-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak z_{6}$

  • The original reference (Byström, 1950) lists this structure as Ag$_{5}$Pb$_{2}$O$_{6}$, while (Villars, 1985) lists it as Ag$_{2}$PbO$_{3}$. (Byström, 1950) provides three Wyckoff positions for Ag: (1a), (1a), and (3c), while (Villars, 1985) only provides two: (1a) and (3c), giving rise to the stoichiometry discrepancy. While both descriptions yield space group $P31m$ #157, we use the structure and coordinates provided by the original reference (Byström, 1950).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (1a) Ag I
$\mathbf{B_{2}}$ = $z_{2} \, \mathbf{a}_{3}$ = $c z_{2} \,\mathbf{\hat{z}}$ (1a) Ag II
$\mathbf{B_{3}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (2b) Pb I
$\mathbf{B_{4}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (2b) Pb I
$\mathbf{B_{5}}$ = $x_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (3c) Ag III
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (3c) Ag III
$\mathbf{B_{7}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+c z_{4} \,\mathbf{\hat{z}}$ (3c) Ag III
$\mathbf{B_{8}}$ = $x_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{5} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (3c) O I
$\mathbf{B_{9}}$ = $x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{5} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (3c) O I
$\mathbf{B_{10}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+c z_{5} \,\mathbf{\hat{z}}$ (3c) O I
$\mathbf{B_{11}}$ = $x_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{6} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (3c) O II
$\mathbf{B_{12}}$ = $x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{6} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (3c) O II
$\mathbf{B_{13}}$ = $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+c z_{6} \,\mathbf{\hat{z}}$ (3c) O II

References

Found in

  • P. Villars and L. D. Calvert, eds., Pearson's Handbook of Crystallographic Data for Intermetallic Phases, vol. 1 (American Society of Metals, Materials Park, Ohio, 1985).

Prototype Generator

aflow --proto=A5B6C2_hP13_157_2ac_2c_b --params=$a,c/a,z_{1},z_{2},z_{3},x_{4},z_{4},x_{5},z_{5},x_{6},z_{6}$

Species:

Running:

Output: