Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B_hP8_158_d_a-001

This structure originally had the label A3B_hP8_158_d_a. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/KC70
or https://aflow.org/p/A3B_hP8_158_d_a-001
or PDF Version

β-RuCl$_{3}$ Structure: A3B_hP8_158_d_a-001

Picture of Structure; Click for Big Picture
Prototype Cl$_{3}$Ru
AFLOW prototype label A3B_hP8_158_d_a-001
ICSD 22093
Pearson symbol hP8
Space group number 158
Space group symbol $P3c1$
AFLOW prototype command aflow --proto=A3B_hP8_158_d_a-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}$

  • The crystal structure of both $\alpha$- and $\beta$–RuCl$_{3}$ is somewhat uncertain:
  • $\alpha$–RuCl$_{3}$ has been reported in the trigonal CrCl$_{3}$ ($D0_{4}$) structure (Fletcher, 1967) and in the monoclinic AlCl$_{3}$ structure (Johnson, 2015).
  • (Fletcher, 1967) states that the structure of $\beta$–RuCl$_{3}$ is consistent with the hexagonal space groups $P6_{3}cm$ #185, $P6c2$ #188, and $P6_{3}/mcm$ #193, in addition to the trigonal space group $P3c1$ #158, which we present here. We also provide the structure with space group #185: hexagonal $\beta$–RuCl$_{3}$ (A3B_hP8_185_c_a).
  • Space group $P3c1$ #158 allows an arbitary choice of the origin of the $z$-axis. Here we set $z_{1} = 0$ for the ruthenium (2a) atoms.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (2a) Ru I
$\mathbf{B_{2}}$ = $\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) Ru I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} + y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{2} - y_{2}\right) \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (6d) Cl I
$\mathbf{B_{4}}$ = $- y_{2} \, \mathbf{a}_{1}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} - 2 y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (6d) Cl I
$\mathbf{B_{5}}$ = $- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{2} - y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (6d) Cl I
$\mathbf{B_{6}}$ = $- y_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{2} + y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{2} - y_{2}\right) \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6d) Cl I
$\mathbf{B_{7}}$ = $- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{2} + 2 y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6d) Cl I
$\mathbf{B_{8}}$ = $x_{2} \, \mathbf{a}_{1}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{2} - y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6d) Cl I

References

  • J. M. Fletcher, W. E. Gardner, A. C. Fox, and G. Topping, X-Ray, infrared, and magnetic studies of α- and β-ruthenium trichloride, J. Chem. Soc. A pp. 1038–1045 (1967), doi:10.1039/J19670001038.
  • R. D. Johnson, S. C. Williams, A. A. Haghighirad, J. Singleton, V. Zapf, P. Manuel, I. I. Mazin, Y. Li, H. O. Jeschke, R. Valentí, and R. Coldea, Monoclinic crystal structure of α-RuCl$_{3}$ and the zigzag antiferromagnetic ground state, Phys. Rev. B 92, 235119 (2015), doi:10.1103/PhysRevB.92.235119.

Prototype Generator

aflow --proto=A3B_hP8_158_d_a --params=$a,c/a,z_{1},x_{2},y_{2},z_{2}$

Species:

Running:

Output: