AFLOW Prototype: A3B_hP12_191_gl_f-001
This structure originally had the label A3B_hP12_191_gl_f. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/SQAX
or
https://aflow.org/p/A3B_hP12_191_gl_f-001
or
PDF Version
Prototype | O$_{3}$W |
AFLOW prototype label | A3B_hP12_191_gl_f-001 |
ICSD | 32001 |
Pearson symbol | hP12 |
Space group number | 191 |
Space group symbol | $P6/mmm$ |
AFLOW prototype command |
aflow --proto=A3B_hP12_191_gl_f-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}$ |
The transition temperatures display large hysteresis effects and universal agreement is not found in the literature.
half-cellstructure.
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ | (3f) | W I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ | (3f) | W I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}$ | (3f) | W I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3g) | O I |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3g) | O I |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3g) | O I |
$\mathbf{B_{7}}$ | = | $x_{3} \, \mathbf{a}_{1}+2 x_{3} \, \mathbf{a}_{2}$ | = | $\frac{3}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}$ | (6l) | O II |
$\mathbf{B_{8}}$ | = | $- 2 x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ | = | $- \frac{3}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}$ | (6l) | O II |
$\mathbf{B_{9}}$ | = | $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ | = | $- \sqrt{3}a x_{3} \,\mathbf{\hat{y}}$ | (6l) | O II |
$\mathbf{B_{10}}$ | = | $- x_{3} \, \mathbf{a}_{1}- 2 x_{3} \, \mathbf{a}_{2}$ | = | $- \frac{3}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}$ | (6l) | O II |
$\mathbf{B_{11}}$ | = | $2 x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}$ | = | $\frac{3}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}$ | (6l) | O II |
$\mathbf{B_{12}}$ | = | $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}$ | = | $\sqrt{3}a x_{3} \,\mathbf{\hat{y}}$ | (6l) | O II |