Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3BC7_hR22_167_e_b_af-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/NS5K
or https://aflow.org/p/A3BC7_hR22_167_e_b_af-001
or PDF Version

ScRh$_{3}$Si$_{7}$ Structure: A3BC7_hR22_167_e_b_af-001

Picture of Structure; Click for Big Picture
Prototype Rh$_{3}$ScSi$_{7}$
AFLOW prototype label A3BC7_hR22_167_e_b_af-001
ICSD 15243
Pearson symbol hR22
Space group number 167
Space group symbol $R\overline{3}c$
AFLOW prototype command aflow --proto=A3BC7_hR22_167_e_b_af-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}$

Other compounds with this structure

CeAu$_{3}$Al$_{7}$,  NdAu$_{3}$Al$_{7}$,  PrAu$_{3}$Al$_{7}$,  ScIr$_{3}$Si$_{7}$,  SmAu$_{3}$Al$_{7}$,  YbIr$_{3}$GE$_{7}$,  YbIr$_{3}$Si$_{7}$,  YbRh$_{3}$Si$_{7}$


  • Hexagonal settings of this structure can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}c \,\mathbf{\hat{z}}$ (2a) Si I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}c \,\mathbf{\hat{z}}$ (2a) Si I
$\mathbf{B_{3}}$ = $0$ = $0$ (2b) Sc I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (2b) Sc I
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \left(4 x_{3} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{8}a \left(4 x_{3} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6e) Rh I
$\mathbf{B_{6}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \left(4 x_{3} - 1\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{8}a \left(4 x_{3} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6e) Rh I
$\mathbf{B_{7}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6e) Rh I
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \left(4 x_{3} + 3\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{24}a \left(12 x_{3} + 1\right) \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ (6e) Rh I
$\mathbf{B_{9}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \left(4 x_{3} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{24}a \left(12 x_{3} + 5\right) \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ (6e) Rh I
$\mathbf{B_{10}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ (6e) Rh I
$\mathbf{B_{11}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{4} - 2 y_{4} + z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{4} + y_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (12f) Si II
$\mathbf{B_{12}}$ = $z_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{4} - z_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{4} - y_{4} - z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{4} + y_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (12f) Si II
$\mathbf{B_{13}}$ = $y_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{4} + y_{4} - 2 z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{4} + y_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (12f) Si II
$\mathbf{B_{14}}$ = $- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{4} - 2 y_{4} + z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{4} + 2 y_{4} + 2 z_{4} - 3\right) \,\mathbf{\hat{z}}$ (12f) Si II
$\mathbf{B_{15}}$ = $- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{4} - z_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{4} - y_{4} - z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{4} + 2 y_{4} + 2 z_{4} - 3\right) \,\mathbf{\hat{z}}$ (12f) Si II
$\mathbf{B_{16}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{4} + y_{4} - 2 z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{4} + 2 y_{4} + 2 z_{4} - 3\right) \,\mathbf{\hat{z}}$ (12f) Si II
$\mathbf{B_{17}}$ = $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{4} - 2 y_{4} + z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{4} + y_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (12f) Si II
$\mathbf{B_{18}}$ = $- z_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{4} - z_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{4} - y_{4} - z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{4} + y_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (12f) Si II
$\mathbf{B_{19}}$ = $- y_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{4} + y_{4} - 2 z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{4} + y_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (12f) Si II
$\mathbf{B_{20}}$ = $\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{4} - 2 y_{4} + z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{4} + 2 y_{4} + 2 z_{4} + 3\right) \,\mathbf{\hat{z}}$ (12f) Si II
$\mathbf{B_{21}}$ = $\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{4} - z_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{4} - y_{4} - z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{4} + 2 y_{4} + 2 z_{4} + 3\right) \,\mathbf{\hat{z}}$ (12f) Si II
$\mathbf{B_{22}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{4} + y_{4} - 2 z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{4} + 2 y_{4} + 2 z_{4} + 3\right) \,\mathbf{\hat{z}}$ (12f) Si II

References

  • B. Chabot, N. Engel, and E. Parthé, Trirhodium scandium heptasilicide and triiridium scandium heptasilicide with a new rhombohedral structure type, Acta Crystallogr. Sect. B 37, 671–673 (1981), doi:10.1107/S0567740881003877.

Found in

  • A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, G. D. Ceder, and K. A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, APL Materials 1, 011002 (2013), doi:10.1063/1.4812323.

Prototype Generator

aflow --proto=A3BC7_hR22_167_e_b_af --params=$a,c/a,x_{3},x_{4},y_{4},z_{4}$

Species:

Running:

Output: