Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3BC3_hR14_161_b_a_b-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/TXGA
or https://aflow.org/p/A3BC3_hR14_161_b_a_b-001
or PDF Version

Proustite (Ag$_{3}$AsS$_{3}$) Structure: A3BC3_hR14_161_b_a_b-001

Picture of Structure; Click for Big Picture
Prototype Ag$_{3}$AsS$_{3}$
AFLOW prototype label A3BC3_hR14_161_b_a_b-001
Mineral name proustite
ICSD 27841
Pearson symbol hR14
Space group number 161
Space group symbol $R3c$
AFLOW prototype command aflow --proto=A3BC3_hR14_161_b_a_b-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}$

Other compounds with this structure

Ag$_{3}$AsSe$_{3}$,  Ag$_{3}$SbS$_{3}$ (pyrargyrite)


  • Ag$_{3}$AsS$_{3}$ can also be found in the monoclinic xanthoconite structure. (Villars, 2018) shows phase diagrams with xanthoconite at 150°C and proustite at 350°C, but (Engel, 1968) state that [xanthoconite] is obviously more unstable than proustite.
  • Space group $R3c$ #161 allows an arbitrary choice of the origin of the $z$-axis. Here we set $z_{1} = 0$ for the arsenic atom.
  • Hexagonal settings of this structure can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $c x_{1} \,\mathbf{\hat{z}}$ (2a) As I
$\mathbf{B_{2}}$ = $\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) As I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{2} - 2 y_{2} + z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{2} + y_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6b) Ag I
$\mathbf{B_{4}}$ = $z_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+y_{2} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{2} - z_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{2} - y_{2} - z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{2} + y_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6b) Ag I
$\mathbf{B_{5}}$ = $y_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{2} - y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{2} + y_{2} - 2 z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{2} + y_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6b) Ag I
$\mathbf{B_{6}}$ = $\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{2} - 2 y_{2} + z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{2} + 2 y_{2} + 2 z_{2} + 3\right) \,\mathbf{\hat{z}}$ (6b) Ag I
$\mathbf{B_{7}}$ = $\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{2} - z_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{2} - y_{2} - z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{2} + 2 y_{2} + 2 z_{2} + 3\right) \,\mathbf{\hat{z}}$ (6b) Ag I
$\mathbf{B_{8}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} - y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{2} + y_{2} - 2 z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{2} + 2 y_{2} + 2 z_{2} + 3\right) \,\mathbf{\hat{z}}$ (6b) Ag I
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{3} - 2 y_{3} + z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6b) S I
$\mathbf{B_{10}}$ = $z_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{3} - z_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{3} - y_{3} - z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6b) S I
$\mathbf{B_{11}}$ = $y_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{3} + y_{3} - 2 z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6b) S I
$\mathbf{B_{12}}$ = $\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{3} - 2 y_{3} + z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{3} + 2 y_{3} + 2 z_{3} + 3\right) \,\mathbf{\hat{z}}$ (6b) S I
$\mathbf{B_{13}}$ = $\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{3} - z_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{3} - y_{3} - z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{3} + 2 y_{3} + 2 z_{3} + 3\right) \,\mathbf{\hat{z}}$ (6b) S I
$\mathbf{B_{14}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{3} + y_{3} - 2 z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{3} + 2 y_{3} + 2 z_{3} + 3\right) \,\mathbf{\hat{z}}$ (6b) S I

References

  • D. Harker, The Application of the Three‐Dimensional Patterson Method and the Crystal Structures of Proustite, Ag$_{3}$AsS$_{3}$, and Pyrargyrite, Ag$_{3}$SbS$_{3}$, J. Chem. Phys. 4, 381–390 (1936), doi:10.1063/1.1749863.
  • P. Villars, H. Okamoto, and K. Cenzual, eds., ASM Alloy Phase Diagram Database (ASM International, 2018), chap. 1988 Schmid Fetzer R. (Silver-Arsenic-Sulfur). Copyright © 2006-2018 ASM International.

Found in

  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Prototype Generator

aflow --proto=A3BC3_hR14_161_b_a_b --params=$a,c/a,x_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3}$

Species:

Running:

Output: