Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B7_hP20_186_c_b2c-001

This structure originally had the label A3B7_hP20_186_c_b2c. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/VGVG
or https://aflow.org/p/A3B7_hP20_186_c_b2c-001
or PDF Version

Fe$_{3}$Th$_{7}$ ($D10_{2}$) Structure: A3B7_hP20_186_c_b2c-001

Picture of Structure; Click for Big Picture
Prototype Fe$_{3}$Th$_{7}$
AFLOW prototype label A3B7_hP20_186_c_b2c-001
Strukturbericht designation $D10_{2}$
ICSD 108477
Pearson symbol hP20
Space group number 186
Space group symbol $P6_3mc$
AFLOW prototype command aflow --proto=A3B7_hP20_186_c_b2c-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}$

Other compounds with this structure

B$_{3}$CoRh$_{6}$,  B$_{3}$FeRh$_{6}$,  B$_{3}$Ni$_{7}$,  B$_{3}$Re$_{7}$,  B$_{3}$Rh$_{7}$,  B$_{3}$Ru$_{7}$,  B$_{3}$Tc$_{7}$,  C$_{3}$Fe$_{7}$,  Co$_{3}$Nd$_{7}$,  Co$_{3}$Th$_{7}$,  Ir$_{3}$Ce$_{7}$,  Ir$_{3}$La$_{7}$,  Ir$_{3}$Pr$_{7}$,  Ir$_{3}$Th$_{7}$,  Ni$_{3}$Ce$_{7}$,  Ni$_{3}$La$_{7}$,  Ni$_{3}$Nd$_{7}$,  Ni$_{3}$Pr$_{7}$,  Ni$_{3}$Th$_{7}$,  Os$_{3}$Th$_{7}$,  Pd$_{3}$Ce$_{7}$,  Pd$_{3}$Gd$_{7}$,  Pd$_{3}$La$_{7}$,  Pd$_{3}$Nd$_{7}$,  Pd$_{3}$Pr$_{7}$,  Pd$_{3}$Sm$_{7}$,  Pd$_{3}$Tb$_{7}$,  Pd$_{3}$Th$_{7}$,  Pt$_{3}$La$_{7}$,  Pt$_{3}$Nd$_{7}$,  Pt$_{3}$Th$_{7}$,  Rh$_{3}$Ce$_{7}$,  Rh$_{3}$Dy$_{7}$,  Rh$_{3}$Gd$_{7}$,  Rh$_{3}$Ho$_{7}$,  Rh$_{3}$La$_{7}$,  Rh$_{3}$Nd$_{7}$,  Rh$_{3}$Pr$_{7}$,  Rh$_{3}$Sm$_{7}$,  Rh$_{3}$Tb$_{7}$,  Rh$_{3}$Th$_{7}$,  Ru$_{3}$Th$_{7}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (2b) Th I
$\mathbf{B_{2}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) Th I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (6c) Fe I
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{1}+2 x_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (6c) Fe I
$\mathbf{B_{5}}$ = $- 2 x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (6c) Fe I
$\mathbf{B_{6}}$ = $- x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Fe I
$\mathbf{B_{7}}$ = $- x_{2} \, \mathbf{a}_{1}- 2 x_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Fe I
$\mathbf{B_{8}}$ = $2 x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Fe I
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (6c) Th II
$\mathbf{B_{10}}$ = $x_{3} \, \mathbf{a}_{1}+2 x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (6c) Th II
$\mathbf{B_{11}}$ = $- 2 x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (6c) Th II
$\mathbf{B_{12}}$ = $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Th II
$\mathbf{B_{13}}$ = $- x_{3} \, \mathbf{a}_{1}- 2 x_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Th II
$\mathbf{B_{14}}$ = $2 x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Th II
$\mathbf{B_{15}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (6c) Th III
$\mathbf{B_{16}}$ = $x_{4} \, \mathbf{a}_{1}+2 x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (6c) Th III
$\mathbf{B_{17}}$ = $- 2 x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (6c) Th III
$\mathbf{B_{18}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Th III
$\mathbf{B_{19}}$ = $- x_{4} \, \mathbf{a}_{1}- 2 x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Th III
$\mathbf{B_{20}}$ = $2 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Th III

References

  • J. V. Florio, N. C. Baenziger, and R. E. Rundle, Compounds of thorium with transition metals. II. Systems with iron, cobalt and nickel 9, 367–372 (1956), doi:10.1107/S0365110X5600108X.

Found in

  • ICSD, Inorganic Crystal Structure Database. 108477.

Prototype Generator

aflow --proto=A3B7_hP20_186_c_b2c --params=$a,c/a,z_{1},x_{2},z_{2},x_{3},z_{3},x_{4},z_{4}$

Species:

Running:

Output: