Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B4_hR7_166_ac_2c-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/DJRQ
or https://aflow.org/p/A3B4_hR7_166_ac_2c-001
or PDF Version

In$_{3}$Se$_{4}$ Structure: A3B4_hR7_166_ac_2c-001

Picture of Structure; Click for Big Picture
Prototype In$_{3}$Te$_{4}$
AFLOW prototype label A3B4_hR7_166_ac_2c-001
ICSD 44655
Pearson symbol hR7
Space group number 166
Space group symbol $R\overline{3}m$
AFLOW prototype command aflow --proto=A3B4_hR7_166_ac_2c-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}$

Other compounds with this structure

Bi$_{3}$Te$_{4}$,  Fe$_{3}$S$_{4}$ (smythite),  In$_{3}$Se$_{4}$


  • (Geller, 1965) created this structure under pressures of about 35 kBar, but works such as (Villars, 2018) list it as the room temperature structure for In$_{3}$Te$_{4}$.
  • Hexagonal settings of this structure can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) In I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $c x_{2} \,\mathbf{\hat{z}}$ (2c) In II
$\mathbf{B_{3}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- c x_{2} \,\mathbf{\hat{z}}$ (2c) In II
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $c x_{3} \,\mathbf{\hat{z}}$ (2c) Te I
$\mathbf{B_{5}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- c x_{3} \,\mathbf{\hat{z}}$ (2c) Te I
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $c x_{4} \,\mathbf{\hat{z}}$ (2c) Te II
$\mathbf{B_{7}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- c x_{4} \,\mathbf{\hat{z}}$ (2c) Te II

References

  • S. Geller, A. jayaraman, and J. G. W. Hull, Crystal chemistry and superconductivity of pressure-induced phases in the In-Te system, J. Phys. Chem. Solids 26, 353–361 (1965), doi:10.1016/0022-3697(65)90164-2.
  • P. Villars, H. Okamoto, and K. Cenzual, eds., ASM Alloy Phase Diagram Database (ASM International, 2018), chap. Indium-Tellurium Binary Phase Diagram (1998 Budanova N.Y.). Copyright © 2006-2018 ASM International.

Found in

  • G. Han, Z.-G. Chen, C. Sun, L. Yang, L. Cheng, Z. Li, W. Lu, Z. M. Gibbs, G. J. Snyder, K. Jack, J. Drennan, and J. Zou, A new crystal: layer-structured rhombohedral In$_{3}$Se$_{4}$, CrystEngComm 16, 393–398 (2014), doi:10.1039/c3ce41815d.

Prototype Generator

aflow --proto=A3B4_hR7_166_ac_2c --params=$a,c/a,x_{2},x_{3},x_{4}$

Species:

Running:

Output: