Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B2_hR5_155_e_c-001

This structure originally had the label A3B2_hR5_155_e_c. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/WQGS
or https://aflow.org/p/A3B2_hR5_155_e_c-001
or PDF Version

Hazelwoodite (Ni$_{3}$S$_{2}$, $D5_{e}$) Structure: A3B2_hR5_155_e_c-001

Picture of Structure; Click for Big Picture
Prototype Ni$_{3}$S$_{2}$
AFLOW prototype label A3B2_hR5_155_e_c-001
Strukturbericht designation $D5_{3}$
Mineral name hazelwoodite
ICSD 23114
Pearson symbol hR5
Space group number 155
Space group symbol $R32$
AFLOW prototype command aflow --proto=A3B2_hR5_155_e_c-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak y_{2}$

Other compounds with this structure

Ni$_{3}$Se$_{2}$


  • This can be considered as a prototype for a high concentration of ordered vacancies in the hcp structure. We get the ideal hcp atomic positions when z$_{1}$=1/3 and y$_{2}$=1/6, leaving a vacancy at the origin.
  • Hexagonal settings of this structure can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $c x_{1} \,\mathbf{\hat{z}}$ (2c) S I
$\mathbf{B_{2}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ = $- c x_{1} \,\mathbf{\hat{z}}$ (2c) S I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}- y_{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \left(2 y_{2} + 1\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{12}a \left(6 y_{2} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ (3e) Ni I
$\mathbf{B_{4}}$ = $- y_{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+y_{2} \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ (3e) Ni I
$\mathbf{B_{5}}$ = $y_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \left(2 y_{2} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{12}a \left(6 y_{2} + 1\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ (3e) Ni I

References


Prototype Generator

aflow --proto=A3B2_hR5_155_e_c --params=$a,c/a,x_{1},y_{2}$

Species:

Running:

Output: