Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A30B23_hR53_148_5f_a2c3f-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/DB0A
or https://aflow.org/p/A30B23_hR53_148_5f_a2c3f-001
or PDF Version

Mg$_{23}$Al$_{30}$ Structure: A30B23_hR53_148_5f_a2c3f-001

Picture of Structure; Click for Big Picture
Prototype Al$_{30}$Mg$_{23}$
AFLOW prototype label A30B23_hR53_148_5f_a2c3f-001
ICSD 57965
Pearson symbol hR53
Space group number 148
Space group symbol $R\overline{3}$
AFLOW prototype command aflow --proto=A30B23_hR53_148_5f_a2c3f-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}$

  • (Samson, 1968) finds that the stoichiometry of this system is closer to Mg$_{22}$Al$_{31}$ than Mg$_{23}$Al$_{30}$, so there must be some substitutional disorder in this structure.
  • We have shifted the origin so that the first magnesium atom is at (1a) (0 0 0) instead of (1b) (0 0 1/2).
  • Hexagonal settings of this structure can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Mg I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $c x_{2} \,\mathbf{\hat{z}}$ (2c) Mg II
$\mathbf{B_{3}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- c x_{2} \,\mathbf{\hat{z}}$ (2c) Mg II
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $c x_{3} \,\mathbf{\hat{z}}$ (2c) Mg III
$\mathbf{B_{5}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- c x_{3} \,\mathbf{\hat{z}}$ (2c) Mg III
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{4} - 2 y_{4} + z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{4} + y_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6f) Al I
$\mathbf{B_{7}}$ = $z_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{4} - z_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{4} - y_{4} - z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{4} + y_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6f) Al I
$\mathbf{B_{8}}$ = $y_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{4} + y_{4} - 2 z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{4} + y_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6f) Al I
$\mathbf{B_{9}}$ = $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{4} - 2 y_{4} + z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{4} + y_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6f) Al I
$\mathbf{B_{10}}$ = $- z_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{4} - z_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{4} - y_{4} - z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{4} + y_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6f) Al I
$\mathbf{B_{11}}$ = $- y_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{4} + y_{4} - 2 z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{4} + y_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6f) Al I
$\mathbf{B_{12}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{5} - 2 y_{5} + z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{5} + y_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6f) Al II
$\mathbf{B_{13}}$ = $z_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{5} - z_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{5} - y_{5} - z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{5} + y_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6f) Al II
$\mathbf{B_{14}}$ = $y_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{5} + y_{5} - 2 z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{5} + y_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6f) Al II
$\mathbf{B_{15}}$ = $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{5} - 2 y_{5} + z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{5} + y_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6f) Al II
$\mathbf{B_{16}}$ = $- z_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{5} - z_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{5} - y_{5} - z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{5} + y_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6f) Al II
$\mathbf{B_{17}}$ = $- y_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{5} + y_{5} - 2 z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{5} + y_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6f) Al II
$\mathbf{B_{18}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{6} - 2 y_{6} + z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{6} + y_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6f) Al III
$\mathbf{B_{19}}$ = $z_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{6} - z_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{6} - y_{6} - z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{6} + y_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6f) Al III
$\mathbf{B_{20}}$ = $y_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{6} + y_{6} - 2 z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{6} + y_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6f) Al III
$\mathbf{B_{21}}$ = $- x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{6} - 2 y_{6} + z_{6}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{6} + y_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6f) Al III
$\mathbf{B_{22}}$ = $- z_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{6} - z_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{6} - y_{6} - z_{6}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{6} + y_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6f) Al III
$\mathbf{B_{23}}$ = $- y_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{6} + y_{6} - 2 z_{6}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{6} + y_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6f) Al III
$\mathbf{B_{24}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{7} - 2 y_{7} + z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{7} + y_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6f) Al IV
$\mathbf{B_{25}}$ = $z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{7} - z_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{7} - y_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{7} + y_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6f) Al IV
$\mathbf{B_{26}}$ = $y_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{7} + y_{7} - 2 z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{7} + y_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6f) Al IV
$\mathbf{B_{27}}$ = $- x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{7} - 2 y_{7} + z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{7} + y_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6f) Al IV
$\mathbf{B_{28}}$ = $- z_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- y_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{7} - z_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{7} - y_{7} - z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{7} + y_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6f) Al IV
$\mathbf{B_{29}}$ = $- y_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{7} + y_{7} - 2 z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{7} + y_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6f) Al IV
$\mathbf{B_{30}}$ = $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{8} - 2 y_{8} + z_{8}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{8} + y_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ (6f) Al V
$\mathbf{B_{31}}$ = $z_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{8} - z_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{8} - y_{8} - z_{8}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{8} + y_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ (6f) Al V
$\mathbf{B_{32}}$ = $y_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{8} + y_{8} - 2 z_{8}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{8} + y_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ (6f) Al V
$\mathbf{B_{33}}$ = $- x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{8} - 2 y_{8} + z_{8}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{8} + y_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ (6f) Al V
$\mathbf{B_{34}}$ = $- z_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{8} - z_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{8} - y_{8} - z_{8}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{8} + y_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ (6f) Al V
$\mathbf{B_{35}}$ = $- y_{8} \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{8} + y_{8} - 2 z_{8}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{8} + y_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ (6f) Al V
$\mathbf{B_{36}}$ = $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{9} - 2 y_{9} + z_{9}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{9} + y_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ (6f) Mg IV
$\mathbf{B_{37}}$ = $z_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+y_{9} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{9} - z_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{9} - y_{9} - z_{9}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{9} + y_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ (6f) Mg IV
$\mathbf{B_{38}}$ = $y_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{9} - y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{9} + y_{9} - 2 z_{9}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{9} + y_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ (6f) Mg IV
$\mathbf{B_{39}}$ = $- x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{9} - 2 y_{9} + z_{9}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{9} + y_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ (6f) Mg IV
$\mathbf{B_{40}}$ = $- z_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- y_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{9} - z_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{9} - y_{9} - z_{9}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{9} + y_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ (6f) Mg IV
$\mathbf{B_{41}}$ = $- y_{9} \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{9} - y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{9} + y_{9} - 2 z_{9}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{9} + y_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ (6f) Mg IV
$\mathbf{B_{42}}$ = $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{10} - z_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{10} - 2 y_{10} + z_{10}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (6f) Mg V
$\mathbf{B_{43}}$ = $z_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+y_{10} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{10} - z_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{10} - y_{10} - z_{10}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (6f) Mg V
$\mathbf{B_{44}}$ = $y_{10} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{10} + y_{10} - 2 z_{10}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (6f) Mg V
$\mathbf{B_{45}}$ = $- x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{10} - z_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{10} - 2 y_{10} + z_{10}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (6f) Mg V
$\mathbf{B_{46}}$ = $- z_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- y_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{10} - z_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{10} - y_{10} - z_{10}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (6f) Mg V
$\mathbf{B_{47}}$ = $- y_{10} \, \mathbf{a}_{1}- z_{10} \, \mathbf{a}_{2}- x_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{10} + y_{10} - 2 z_{10}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (6f) Mg V
$\mathbf{B_{48}}$ = $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{11} - z_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{11} - 2 y_{11} + z_{11}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{11} + y_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (6f) Mg VI
$\mathbf{B_{49}}$ = $z_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+y_{11} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{11} - z_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{11} - y_{11} - z_{11}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{11} + y_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (6f) Mg VI
$\mathbf{B_{50}}$ = $y_{11} \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{11} - y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{11} + y_{11} - 2 z_{11}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{11} + y_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (6f) Mg VI
$\mathbf{B_{51}}$ = $- x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{11} - z_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{11} - 2 y_{11} + z_{11}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{11} + y_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (6f) Mg VI
$\mathbf{B_{52}}$ = $- z_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}- y_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{11} - z_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{11} - y_{11} - z_{11}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{11} + y_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (6f) Mg VI
$\mathbf{B_{53}}$ = $- y_{11} \, \mathbf{a}_{1}- z_{11} \, \mathbf{a}_{2}- x_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{11} - y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{11} + y_{11} - 2 z_{11}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{11} + y_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (6f) Mg VI

References

  • S. Samson and E. K. Gordon, The crystal structure of ε-Mg$_{23}$Al$_{30}$, Acta Crystallogr. Sect. B 24, 1004–1013 (1968), doi:10.1107/S0567740868003638.

Found in

  • P. Villars, H. Okamoto, and K. Cenzual, eds., ASM Alloy Phase Diagram Database (ASM International, 2018), chap. Aluminum-Magnesium Binary Phase Diagram (1998 Okamoto H.). Copyright © 2006-2018 ASM International.

Prototype Generator

aflow --proto=A30B23_hR53_148_5f_a2c3f --params=$a,c/a,x_{2},x_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11}$

Species:

Running:

Output: