Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B_hP18_180_fj_ac-001

This structure originally had the label A2B_hP18_180_fi_bd. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/TDY8
or https://aflow.org/p/A2B_hP18_180_fj_ac-001
or PDF Version

Mg$_{2}$Ni ($C_{a}$) Structure: A2B_hP18_180_fj_ac-001

Picture of Structure; Click for Big Picture
Prototype Mg$_{2}$Ni
AFLOW prototype label A2B_hP18_180_fj_ac-001
Strukturbericht designation $C_{a}$
ICSD 104912
Pearson symbol hP18
Space group number 180
Space group symbol $P6_222$
AFLOW prototype command aflow --proto=A2B_hP18_180_fj_ac-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak x_{4}$

Other compounds with this structure

CuMg$_{4}$Ni,  MoSn$_{2}$


  • This structure can also be found in the enantiomorphic space group $P6_{4}22$ #181.
  • Our original (Mehl, 2017) rendering of this structure swapped the magnesium z$_{3}$ and x$_{4}$ coordinates.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (3a) Ni I
$\mathbf{B_{2}}$ = $\frac{2}{3} \, \mathbf{a}_{3}$ = $\frac{2}{3}c \,\mathbf{\hat{z}}$ (3a) Ni I
$\mathbf{B_{3}}$ = $\frac{1}{3} \, \mathbf{a}_{3}$ = $\frac{1}{3}c \,\mathbf{\hat{z}}$ (3a) Ni I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ (3c) Ni II
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ (3c) Ni II
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (3c) Ni II
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (6f) Mg I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{3} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{3} + 2\right) \,\mathbf{\hat{z}}$ (6f) Mg I
$\mathbf{B_{9}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c \left(z_{3} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (6f) Mg I
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{3} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{3} - 2\right) \,\mathbf{\hat{z}}$ (6f) Mg I
$\mathbf{B_{11}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (6f) Mg I
$\mathbf{B_{12}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c \left(z_{3} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (6f) Mg I
$\mathbf{B_{13}}$ = $x_{4} \, \mathbf{a}_{1}+2 x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (6j) Mg II
$\mathbf{B_{14}}$ = $- 2 x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{6} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ (6j) Mg II
$\mathbf{B_{15}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{5}{6} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{4} \,\mathbf{\hat{y}}+\frac{5}{6}c \,\mathbf{\hat{z}}$ (6j) Mg II
$\mathbf{B_{16}}$ = $- x_{4} \, \mathbf{a}_{1}- 2 x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (6j) Mg II
$\mathbf{B_{17}}$ = $2 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{1}{6} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ (6j) Mg II
$\mathbf{B_{18}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{5}{6} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{4} \,\mathbf{\hat{y}}+\frac{5}{6}c \,\mathbf{\hat{z}}$ (6j) Mg II

References

  • J. Schefer, P. Fischer, W. Hälg, F. Stucki, L. Schlapbach, J. J. Didisheim, K. Yvon, and A. F. Andresen, New structure results for hydrides and deuterides of the hydrogen storage material Mg$_2$Ni, J. Less-Common Met. 74, 65–73 (1980), doi:10.1016/0022-5088(80)90074-0.
  • M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comput. Mater. Sci. 136, S1–S828 (2017), doi:10.1016/j.commatsci.2017.01.017.

Found in

  • P. Villars, Mg$_{2}$Ni Crystal Structure (2016). PAULING FILE in: Inorganic Solid Phases, SpringerMaterials (online database), Springer, Heidelberg (ed.) Springer Materials.

Prototype Generator

aflow --proto=A2B_hP18_180_fj_ac --params=$a,c/a,z_{3},x_{4}$

Species:

Running:

Output: