Forsterite (Mg2 SiO4 , S 1 2 ) Structure: A2B4C_oP28_62_ac_2cd_c-001
Prototype
Mg2 O4 Si
AFLOW prototype label
A2B4C_oP28_62_ac_2cd_c-001
Strukturbericht designation S 1 2
Mineral name forsterite
ICSD 64744
Pearson symbol
oP28
Space group number
62
Space group symbol
P nma
AFLOW prototype command
aflow --proto=A2B4C_oP28_62_ac_2cd_c-001
--params=a , b / a , c / a , x 2 , z 2 , x 3 , z 3 , x 4 , z 4 , x 5 , z 5 , x 6 , y 6 , z 6
Other compounds with this structure
Al2 BeO4 , Fe2 SiO4 (fayalite), Fe2 SiS4 , Mg2 GeO4 , Mg2 GeS4 , Mg2 GeS4 , Mn2 GeS4 , Tm2 ZnS4
This structure is the magnesium end-point of olivine, (Mg,Fe)2 SiO4 . We use the structural data taken by (Hazen, 1976) at 23∘ C. For olivine structures where the (2a) and (2c) sites have different species, see the monticellite structure page . (Hazen, 1976) reports the structure in the P bnm setting of space group #62. We have transformed this into the standard P nma setting.
a 1 a 2 a 3 = = = a x ^ b y ^ c z ^
Basis vectors
Lattice
coordinates Cartesian
coordinates Wyckoff position Atom type
B 1 = 0 = 0 (4a) Mg I
B 2 = 2 1 a 1 + 2 1 a 3 = 2 1 a x ^ + 2 1 c z ^ (4a) Mg I
B 3 = 2 1 a 2 = 2 1 b y ^ (4a) Mg I
B 4 = 2 1 a 1 + 2 1 a 2 + 2 1 a 3 = 2 1 a x ^ + 2 1 b y ^ + 2 1 c z ^ (4a) Mg I
B 5 = x 2 a 1 + 4 1 a 2 + z 2 a 3 = a x 2 x ^ + 4 1 b y ^ + c z 2 z ^ (4c) Mg II
B 6 = − ( x 2 − 2 1 ) a 1 + 4 3 a 2 + ( z 2 + 2 1 ) a 3 = − a ( x 2 − 2 1 ) x ^ + 4 3 b y ^ + c ( z 2 + 2 1 ) z ^ (4c) Mg II
B 7 = − x 2 a 1 + 4 3 a 2 − z 2 a 3 = − a x 2 x ^ + 4 3 b y ^ − c z 2 z ^ (4c) Mg II
B 8 = ( x 2 + 2 1 ) a 1 + 4 1 a 2 − ( z 2 − 2 1 ) a 3 = a ( x 2 + 2 1 ) x ^ + 4 1 b y ^ − c ( z 2 − 2 1 ) z ^ (4c) Mg II
B 9 = x 3 a 1 + 4 1 a 2 + z 3 a 3 = a x 3 x ^ + 4 1 b y ^ + c z 3 z ^ (4c) O I
B 10 = − ( x 3 − 2 1 ) a 1 + 4 3 a 2 + ( z 3 + 2 1 ) a 3 = − a ( x 3 − 2 1 ) x ^ + 4 3 b y ^ + c ( z 3 + 2 1 ) z ^ (4c) O I
B 11 = − x 3 a 1 + 4 3 a 2 − z 3 a 3 = − a x 3 x ^ + 4 3 b y ^ − c z 3 z ^ (4c) O I
B 12 = ( x 3 + 2 1 ) a 1 + 4 1 a 2 − ( z 3 − 2 1 ) a 3 = a ( x 3 + 2 1 ) x ^ + 4 1 b y ^ − c ( z 3 − 2 1 ) z ^ (4c) O I
B 13 = x 4 a 1 + 4 1 a 2 + z 4 a 3 = a x 4 x ^ + 4 1 b y ^ + c z 4 z ^ (4c) O II
B 14 = − ( x 4 − 2 1 ) a 1 + 4 3 a 2 + ( z 4 + 2 1 ) a 3 = − a ( x 4 − 2 1 ) x ^ + 4 3 b y ^ + c ( z 4 + 2 1 ) z ^ (4c) O II
B 15 = − x 4 a 1 + 4 3 a 2 − z 4 a 3 = − a x 4 x ^ + 4 3 b y ^ − c z 4 z ^ (4c) O II
B 16 = ( x 4 + 2 1 ) a 1 + 4 1 a 2 − ( z 4 − 2 1 ) a 3 = a ( x 4 + 2 1 ) x ^ + 4 1 b y ^ − c ( z 4 − 2 1 ) z ^ (4c) O II
B 17 = x 5 a 1 + 4 1 a 2 + z 5 a 3 = a x 5 x ^ + 4 1 b y ^ + c z 5 z ^ (4c) Si I
B 18 = − ( x 5 − 2 1 ) a 1 + 4 3 a 2 + ( z 5 + 2 1 ) a 3 = − a ( x 5 − 2 1 ) x ^ + 4 3 b y ^ + c ( z 5 + 2 1 ) z ^ (4c) Si I
B 19 = − x 5 a 1 + 4 3 a 2 − z 5 a 3 = − a x 5 x ^ + 4 3 b y ^ − c z 5 z ^ (4c) Si I
B 20 = ( x 5 + 2 1 ) a 1 + 4 1 a 2 − ( z 5 − 2 1 ) a 3 = a ( x 5 + 2 1 ) x ^ + 4 1 b y ^ − c ( z 5 − 2 1 ) z ^ (4c) Si I
B 21 = x 6 a 1 + y 6 a 2 + z 6 a 3 = a x 6 x ^ + b y 6 y ^ + c z 6 z ^ (8d) O III
B 22 = − ( x 6 − 2 1 ) a 1 − y 6 a 2 + ( z 6 + 2 1 ) a 3 = − a ( x 6 − 2 1 ) x ^ − b y 6 y ^ + c ( z 6 + 2 1 ) z ^ (8d) O III
B 23 = − x 6 a 1 + ( y 6 + 2 1 ) a 2 − z 6 a 3 = − a x 6 x ^ + b ( y 6 + 2 1 ) y ^ − c z 6 z ^ (8d) O III
B 24 = ( x 6 + 2 1 ) a 1 − ( y 6 − 2 1 ) a 2 − ( z 6 − 2 1 ) a 3 = a ( x 6 + 2 1 ) x ^ − b ( y 6 − 2 1 ) y ^ − c ( z 6 − 2 1 ) z ^ (8d) O III
B 25 = − x 6 a 1 − y 6 a 2 − z 6 a 3 = − a x 6 x ^ − b y 6 y ^ − c z 6 z ^ (8d) O III
B 26 = ( x 6 + 2 1 ) a 1 + y 6 a 2 − ( z 6 − 2 1 ) a 3 = a ( x 6 + 2 1 ) x ^ + b y 6 y ^ − c ( z 6 − 2 1 ) z ^ (8d) O III
B 27 = x 6 a 1 − ( y 6 − 2 1 ) a 2 + z 6 a 3 = a x 6 x ^ − b ( y 6 − 2 1 ) y ^ + c z 6 z ^ (8d) O III
B 28 = − ( x 6 − 2 1 ) a 1 + ( y 6 + 2 1 ) a 2 + ( z 6 + 2 1 ) a 3 = − a ( x 6 − 2 1 ) x ^ + b ( y 6 + 2 1 ) y ^ + c ( z 6 + 2 1 ) z ^ (8d) O III
References
R. M. Hazen, Effects of temperature and pressure on the crystal structure of forsterite , Am. Mineral. 61 , 1280–1293 (1976).
VASP Output
QE Output
FHI-AIMS Output
ABINIT Output
WYCCAR Output
CIF Output
ELK Output
Refresh Jmol