Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B17_hR19_166_c_cdfh-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/PZ2T
or https://aflow.org/p/A2B17_hR19_166_c_cdfh-001
or PDF Version

Th$_{2}$Zn$_{17}$ Structure: A2B17_hR19_166_c_cdfh-001

Picture of Structure; Click for Big Picture
Prototype Th$_{2}$Zn$_{17}$
AFLOW prototype label A2B17_hR19_166_c_cdfh-001
ICSD 20238
Pearson symbol hR19
Space group number 166
Space group symbol $R\overline{3}m$
AFLOW prototype command aflow --proto=A2B17_hR19_166_c_cdfh-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak z_{5}$

Other compounds with this structure

Ba$_{2}$Mg$_{17}$,  Ce$_{2}$Co$_{17}$,  Ce$_{2}$Fe$_{17}$,  Ce$_{2}$Zn$_{17}$,  Dy$_{2}$Zn$_{17}$,  Er$_{2}$Zn$_{17}$,  Gd$_{2}$Co$_{17}$,  Gd$_{2}$Fe$_{17}$,  Gd$_{2}$Zn$_{17}$,  Ho$_{2}$Zn$_{17}$,  La$_{2}$Zn$_{17}$,  Lu$_{2}$Zn$_{17}$,  Nd$_{2}$Co$_{17}$,  Nd$_{2}$Fe$_{17}$,  Nd$_{2}$Zn$_{17}$,  Pr$_{2}$Co$_{17}$,  Pr$_{2}$Zn$_{17}$,  Sm$_{2}$Co$_{17}$,  Sm$_{2}$Zn$_{17}$,  Tb$_{2}$Co$_{17}$,  Tb$_{2}$Zn$_{17}$,  Th$_{2}$Co$_{17}$,  Th$_{2}$Fe$_{17}$,  Tm$_{2}$Zn$_{17}$,  U$_{2}$Zn$_{17}$,  Yb$_{2}$Zn$_{17}$,  Al$_{2}$Ce$_{2}$Co$_{15}$,  Ce$_{2}$Mn$_{7}$Al$_{10}$


  • Hexagonal settings of this structure can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $c x_{1} \,\mathbf{\hat{z}}$ (2c) Th I
$\mathbf{B_{2}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ = $- c x_{1} \,\mathbf{\hat{z}}$ (2c) Th I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $c x_{2} \,\mathbf{\hat{z}}$ (2c) Zn I
$\mathbf{B_{4}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- c x_{2} \,\mathbf{\hat{z}}$ (2c) Zn I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{12}a \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ (3d) Zn II
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ (3d) Zn II
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{12}a \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ (3d) Zn II
$\mathbf{B_{8}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ = $\frac{1}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}$ (6f) Zn III
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}$ (6f) Zn III
$\mathbf{B_{10}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}$ (6f) Zn III
$\mathbf{B_{11}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}$ = $- \frac{1}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}$ (6f) Zn III
$\mathbf{B_{12}}$ = $- x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}$ (6f) Zn III
$\mathbf{B_{13}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}$ (6f) Zn III
$\mathbf{B_{14}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6h) Zn IV
$\mathbf{B_{15}}$ = $z_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6h) Zn IV
$\mathbf{B_{16}}$ = $x_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6h) Zn IV
$\mathbf{B_{17}}$ = $- z_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6h) Zn IV
$\mathbf{B_{18}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6h) Zn IV
$\mathbf{B_{19}}$ = $- x_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6h) Zn IV

References

  • E. S. Makarov and S. I. Vinogradov, Crystal Structure of Th$_{2}$Zn$_{17}$ and U$_{2}$Zn$_{17}$, Sov. Phys. Crystallogr. 1, 499–504 (1956). Translated from Kristallografiya 1, 634 (1956).

Found in

  • W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Volume 2, International Series of Monographs on Metal Physics and Physical Metallurgy, vol. 8 (Pergamon Press, Oxford, London, Edinburgh, New York, Toronto, Sydney, Paris, Braunschweig, 1967).

Prototype Generator

aflow --proto=A2B17_hR19_166_c_cdfh --params=$a,c/a,x_{1},x_{2},x_{4},x_{5},z_{5}$

Species:

Running:

Output: