Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A21B13_hP136_183_abc3d6e2f_2ab3d5e-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/7BEE
or https://aflow.org/p/A21B13_hP136_183_abc3d6e2f_2ab3d5e-001
or PDF Version

Ta$_{21}$Te$_{13}$ Structure: A21B13_hP136_183_abc3d6e2f_2ab3d5e-001

Picture of Structure; Click for Big Picture
Prototype Ta$_{21}$Te$_{13}$
AFLOW prototype label A21B13_hP136_183_abc3d6e2f_2ab3d5e-001
ICSD 91811
Pearson symbol hP136
Space group number 183
Space group symbol $P6mm$
AFLOW prototype command aflow --proto=A21B13_hP136_183_abc3d6e2f_2ab3d5e-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak z_{16}, \allowbreak x_{17}, \allowbreak z_{17}, \allowbreak x_{18}, \allowbreak z_{18}, \allowbreak x_{19}, \allowbreak z_{19}, \allowbreak x_{20}, \allowbreak z_{20}, \allowbreak x_{21}, \allowbreak z_{21}, \allowbreak x_{22}, \allowbreak z_{22}, \allowbreak x_{23}, \allowbreak z_{23}, \allowbreak x_{24}, \allowbreak y_{24}, \allowbreak z_{24}, \allowbreak x_{25}, \allowbreak y_{25}, \allowbreak z_{25}$

  • This is a hexagonal approximate of the quasicrystal dodecagonal tantalum telluride (dd-Ta$_{1.6}$Te) structure. It may be useful as a starting point for first-principles calculations.
  • Space group $P6mm$ #183 does not specify the origin of the $z$-axis. We use the values of (Conrad, 2000). (Villars, 2006) sets $z_{2} = 0$ for the Te-I site.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (1a) Ta I
$\mathbf{B_{2}}$ = $z_{2} \, \mathbf{a}_{3}$ = $c z_{2} \,\mathbf{\hat{z}}$ (1a) Te I
$\mathbf{B_{3}}$ = $z_{3} \, \mathbf{a}_{3}$ = $c z_{3} \,\mathbf{\hat{z}}$ (1a) Te II
$\mathbf{B_{4}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (2b) Ta II
$\mathbf{B_{5}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (2b) Ta II
$\mathbf{B_{6}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (2b) Te III
$\mathbf{B_{7}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (2b) Te III
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (3c) Ta III
$\mathbf{B_{9}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (3c) Ta III
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{6} \,\mathbf{\hat{z}}$ (3c) Ta III
$\mathbf{B_{11}}$ = $x_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{7} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (6d) Ta IV
$\mathbf{B_{12}}$ = $x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{7} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (6d) Ta IV
$\mathbf{B_{13}}$ = $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+c z_{7} \,\mathbf{\hat{z}}$ (6d) Ta IV
$\mathbf{B_{14}}$ = $- x_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a x_{7} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (6d) Ta IV
$\mathbf{B_{15}}$ = $- x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a x_{7} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (6d) Ta IV
$\mathbf{B_{16}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+c z_{7} \,\mathbf{\hat{z}}$ (6d) Ta IV
$\mathbf{B_{17}}$ = $x_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{8} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (6d) Ta V
$\mathbf{B_{18}}$ = $x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{8} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (6d) Ta V
$\mathbf{B_{19}}$ = $- x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+c z_{8} \,\mathbf{\hat{z}}$ (6d) Ta V
$\mathbf{B_{20}}$ = $- x_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a x_{8} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (6d) Ta V
$\mathbf{B_{21}}$ = $- x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a x_{8} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (6d) Ta V
$\mathbf{B_{22}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+c z_{8} \,\mathbf{\hat{z}}$ (6d) Ta V
$\mathbf{B_{23}}$ = $x_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{9} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (6d) Ta VI
$\mathbf{B_{24}}$ = $x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{9} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (6d) Ta VI
$\mathbf{B_{25}}$ = $- x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+c z_{9} \,\mathbf{\hat{z}}$ (6d) Ta VI
$\mathbf{B_{26}}$ = $- x_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a x_{9} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (6d) Ta VI
$\mathbf{B_{27}}$ = $- x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a x_{9} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (6d) Ta VI
$\mathbf{B_{28}}$ = $x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+c z_{9} \,\mathbf{\hat{z}}$ (6d) Ta VI
$\mathbf{B_{29}}$ = $x_{10} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{10} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (6d) Te IV
$\mathbf{B_{30}}$ = $x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{10} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (6d) Te IV
$\mathbf{B_{31}}$ = $- x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}+c z_{10} \,\mathbf{\hat{z}}$ (6d) Te IV
$\mathbf{B_{32}}$ = $- x_{10} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a x_{10} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (6d) Te IV
$\mathbf{B_{33}}$ = $- x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a x_{10} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (6d) Te IV
$\mathbf{B_{34}}$ = $x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+c z_{10} \,\mathbf{\hat{z}}$ (6d) Te IV
$\mathbf{B_{35}}$ = $x_{11} \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{11} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (6d) Te V
$\mathbf{B_{36}}$ = $x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{11} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (6d) Te V
$\mathbf{B_{37}}$ = $- x_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}+c z_{11} \,\mathbf{\hat{z}}$ (6d) Te V
$\mathbf{B_{38}}$ = $- x_{11} \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a x_{11} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (6d) Te V
$\mathbf{B_{39}}$ = $- x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a x_{11} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (6d) Te V
$\mathbf{B_{40}}$ = $x_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+c z_{11} \,\mathbf{\hat{z}}$ (6d) Te V
$\mathbf{B_{41}}$ = $x_{12} \, \mathbf{a}_{1}+z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{12} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (6d) Te VI
$\mathbf{B_{42}}$ = $x_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{12} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (6d) Te VI
$\mathbf{B_{43}}$ = $- x_{12} \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}+c z_{12} \,\mathbf{\hat{z}}$ (6d) Te VI
$\mathbf{B_{44}}$ = $- x_{12} \, \mathbf{a}_{1}+z_{12} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a x_{12} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (6d) Te VI
$\mathbf{B_{45}}$ = $- x_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a x_{12} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (6d) Te VI
$\mathbf{B_{46}}$ = $x_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+c z_{12} \,\mathbf{\hat{z}}$ (6d) Te VI
$\mathbf{B_{47}}$ = $x_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (6e) Ta VII
$\mathbf{B_{48}}$ = $x_{13} \, \mathbf{a}_{1}+2 x_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{13} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (6e) Ta VII
$\mathbf{B_{49}}$ = $- 2 x_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{13} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (6e) Ta VII
$\mathbf{B_{50}}$ = $- x_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (6e) Ta VII
$\mathbf{B_{51}}$ = $- x_{13} \, \mathbf{a}_{1}- 2 x_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{13} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (6e) Ta VII
$\mathbf{B_{52}}$ = $2 x_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{13} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (6e) Ta VII
$\mathbf{B_{53}}$ = $x_{14} \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (6e) Ta VIII
$\mathbf{B_{54}}$ = $x_{14} \, \mathbf{a}_{1}+2 x_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{14} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (6e) Ta VIII
$\mathbf{B_{55}}$ = $- 2 x_{14} \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{14} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (6e) Ta VIII
$\mathbf{B_{56}}$ = $- x_{14} \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (6e) Ta VIII
$\mathbf{B_{57}}$ = $- x_{14} \, \mathbf{a}_{1}- 2 x_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{14} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (6e) Ta VIII
$\mathbf{B_{58}}$ = $2 x_{14} \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{14} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (6e) Ta VIII
$\mathbf{B_{59}}$ = $x_{15} \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (6e) Ta IX
$\mathbf{B_{60}}$ = $x_{15} \, \mathbf{a}_{1}+2 x_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{15} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (6e) Ta IX
$\mathbf{B_{61}}$ = $- 2 x_{15} \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{15} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (6e) Ta IX
$\mathbf{B_{62}}$ = $- x_{15} \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (6e) Ta IX
$\mathbf{B_{63}}$ = $- x_{15} \, \mathbf{a}_{1}- 2 x_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{15} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (6e) Ta IX
$\mathbf{B_{64}}$ = $2 x_{15} \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{15} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (6e) Ta IX
$\mathbf{B_{65}}$ = $x_{16} \, \mathbf{a}_{1}- x_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (6e) Ta X
$\mathbf{B_{66}}$ = $x_{16} \, \mathbf{a}_{1}+2 x_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{16} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (6e) Ta X
$\mathbf{B_{67}}$ = $- 2 x_{16} \, \mathbf{a}_{1}- x_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{16} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (6e) Ta X
$\mathbf{B_{68}}$ = $- x_{16} \, \mathbf{a}_{1}+x_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (6e) Ta X
$\mathbf{B_{69}}$ = $- x_{16} \, \mathbf{a}_{1}- 2 x_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{16} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (6e) Ta X
$\mathbf{B_{70}}$ = $2 x_{16} \, \mathbf{a}_{1}+x_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{16} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (6e) Ta X
$\mathbf{B_{71}}$ = $x_{17} \, \mathbf{a}_{1}- x_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (6e) Ta XI
$\mathbf{B_{72}}$ = $x_{17} \, \mathbf{a}_{1}+2 x_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{17} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (6e) Ta XI
$\mathbf{B_{73}}$ = $- 2 x_{17} \, \mathbf{a}_{1}- x_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{17} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (6e) Ta XI
$\mathbf{B_{74}}$ = $- x_{17} \, \mathbf{a}_{1}+x_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (6e) Ta XI
$\mathbf{B_{75}}$ = $- x_{17} \, \mathbf{a}_{1}- 2 x_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{17} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (6e) Ta XI
$\mathbf{B_{76}}$ = $2 x_{17} \, \mathbf{a}_{1}+x_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{17} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (6e) Ta XI
$\mathbf{B_{77}}$ = $x_{18} \, \mathbf{a}_{1}- x_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{18} \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (6e) Ta XII
$\mathbf{B_{78}}$ = $x_{18} \, \mathbf{a}_{1}+2 x_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{18} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{18} \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (6e) Ta XII
$\mathbf{B_{79}}$ = $- 2 x_{18} \, \mathbf{a}_{1}- x_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{18} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{18} \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (6e) Ta XII
$\mathbf{B_{80}}$ = $- x_{18} \, \mathbf{a}_{1}+x_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{18} \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (6e) Ta XII
$\mathbf{B_{81}}$ = $- x_{18} \, \mathbf{a}_{1}- 2 x_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{18} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{18} \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (6e) Ta XII
$\mathbf{B_{82}}$ = $2 x_{18} \, \mathbf{a}_{1}+x_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{18} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{18} \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (6e) Ta XII
$\mathbf{B_{83}}$ = $x_{19} \, \mathbf{a}_{1}- x_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{19} \,\mathbf{\hat{y}}+c z_{19} \,\mathbf{\hat{z}}$ (6e) Te VII
$\mathbf{B_{84}}$ = $x_{19} \, \mathbf{a}_{1}+2 x_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{19} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{19} \,\mathbf{\hat{y}}+c z_{19} \,\mathbf{\hat{z}}$ (6e) Te VII
$\mathbf{B_{85}}$ = $- 2 x_{19} \, \mathbf{a}_{1}- x_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{19} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{19} \,\mathbf{\hat{y}}+c z_{19} \,\mathbf{\hat{z}}$ (6e) Te VII
$\mathbf{B_{86}}$ = $- x_{19} \, \mathbf{a}_{1}+x_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{19} \,\mathbf{\hat{y}}+c z_{19} \,\mathbf{\hat{z}}$ (6e) Te VII
$\mathbf{B_{87}}$ = $- x_{19} \, \mathbf{a}_{1}- 2 x_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{19} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{19} \,\mathbf{\hat{y}}+c z_{19} \,\mathbf{\hat{z}}$ (6e) Te VII
$\mathbf{B_{88}}$ = $2 x_{19} \, \mathbf{a}_{1}+x_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{19} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{19} \,\mathbf{\hat{y}}+c z_{19} \,\mathbf{\hat{z}}$ (6e) Te VII
$\mathbf{B_{89}}$ = $x_{20} \, \mathbf{a}_{1}- x_{20} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{20} \,\mathbf{\hat{y}}+c z_{20} \,\mathbf{\hat{z}}$ (6e) Te VIII
$\mathbf{B_{90}}$ = $x_{20} \, \mathbf{a}_{1}+2 x_{20} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{20} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{20} \,\mathbf{\hat{y}}+c z_{20} \,\mathbf{\hat{z}}$ (6e) Te VIII
$\mathbf{B_{91}}$ = $- 2 x_{20} \, \mathbf{a}_{1}- x_{20} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{20} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{20} \,\mathbf{\hat{y}}+c z_{20} \,\mathbf{\hat{z}}$ (6e) Te VIII
$\mathbf{B_{92}}$ = $- x_{20} \, \mathbf{a}_{1}+x_{20} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{20} \,\mathbf{\hat{y}}+c z_{20} \,\mathbf{\hat{z}}$ (6e) Te VIII
$\mathbf{B_{93}}$ = $- x_{20} \, \mathbf{a}_{1}- 2 x_{20} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{20} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{20} \,\mathbf{\hat{y}}+c z_{20} \,\mathbf{\hat{z}}$ (6e) Te VIII
$\mathbf{B_{94}}$ = $2 x_{20} \, \mathbf{a}_{1}+x_{20} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{20} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{20} \,\mathbf{\hat{y}}+c z_{20} \,\mathbf{\hat{z}}$ (6e) Te VIII
$\mathbf{B_{95}}$ = $x_{21} \, \mathbf{a}_{1}- x_{21} \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{21} \,\mathbf{\hat{y}}+c z_{21} \,\mathbf{\hat{z}}$ (6e) Te IX
$\mathbf{B_{96}}$ = $x_{21} \, \mathbf{a}_{1}+2 x_{21} \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{21} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{21} \,\mathbf{\hat{y}}+c z_{21} \,\mathbf{\hat{z}}$ (6e) Te IX
$\mathbf{B_{97}}$ = $- 2 x_{21} \, \mathbf{a}_{1}- x_{21} \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{21} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{21} \,\mathbf{\hat{y}}+c z_{21} \,\mathbf{\hat{z}}$ (6e) Te IX
$\mathbf{B_{98}}$ = $- x_{21} \, \mathbf{a}_{1}+x_{21} \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{21} \,\mathbf{\hat{y}}+c z_{21} \,\mathbf{\hat{z}}$ (6e) Te IX
$\mathbf{B_{99}}$ = $- x_{21} \, \mathbf{a}_{1}- 2 x_{21} \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{21} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{21} \,\mathbf{\hat{y}}+c z_{21} \,\mathbf{\hat{z}}$ (6e) Te IX
$\mathbf{B_{100}}$ = $2 x_{21} \, \mathbf{a}_{1}+x_{21} \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{21} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{21} \,\mathbf{\hat{y}}+c z_{21} \,\mathbf{\hat{z}}$ (6e) Te IX
$\mathbf{B_{101}}$ = $x_{22} \, \mathbf{a}_{1}- x_{22} \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{22} \,\mathbf{\hat{y}}+c z_{22} \,\mathbf{\hat{z}}$ (6e) Te X
$\mathbf{B_{102}}$ = $x_{22} \, \mathbf{a}_{1}+2 x_{22} \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{22} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{22} \,\mathbf{\hat{y}}+c z_{22} \,\mathbf{\hat{z}}$ (6e) Te X
$\mathbf{B_{103}}$ = $- 2 x_{22} \, \mathbf{a}_{1}- x_{22} \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{22} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{22} \,\mathbf{\hat{y}}+c z_{22} \,\mathbf{\hat{z}}$ (6e) Te X
$\mathbf{B_{104}}$ = $- x_{22} \, \mathbf{a}_{1}+x_{22} \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{22} \,\mathbf{\hat{y}}+c z_{22} \,\mathbf{\hat{z}}$ (6e) Te X
$\mathbf{B_{105}}$ = $- x_{22} \, \mathbf{a}_{1}- 2 x_{22} \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{22} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{22} \,\mathbf{\hat{y}}+c z_{22} \,\mathbf{\hat{z}}$ (6e) Te X
$\mathbf{B_{106}}$ = $2 x_{22} \, \mathbf{a}_{1}+x_{22} \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{22} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{22} \,\mathbf{\hat{y}}+c z_{22} \,\mathbf{\hat{z}}$ (6e) Te X
$\mathbf{B_{107}}$ = $x_{23} \, \mathbf{a}_{1}- x_{23} \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{23} \,\mathbf{\hat{y}}+c z_{23} \,\mathbf{\hat{z}}$ (6e) Te XI
$\mathbf{B_{108}}$ = $x_{23} \, \mathbf{a}_{1}+2 x_{23} \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{23} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{23} \,\mathbf{\hat{y}}+c z_{23} \,\mathbf{\hat{z}}$ (6e) Te XI
$\mathbf{B_{109}}$ = $- 2 x_{23} \, \mathbf{a}_{1}- x_{23} \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{23} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{23} \,\mathbf{\hat{y}}+c z_{23} \,\mathbf{\hat{z}}$ (6e) Te XI
$\mathbf{B_{110}}$ = $- x_{23} \, \mathbf{a}_{1}+x_{23} \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{23} \,\mathbf{\hat{y}}+c z_{23} \,\mathbf{\hat{z}}$ (6e) Te XI
$\mathbf{B_{111}}$ = $- x_{23} \, \mathbf{a}_{1}- 2 x_{23} \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{23} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{23} \,\mathbf{\hat{y}}+c z_{23} \,\mathbf{\hat{z}}$ (6e) Te XI
$\mathbf{B_{112}}$ = $2 x_{23} \, \mathbf{a}_{1}+x_{23} \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{23} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{23} \,\mathbf{\hat{y}}+c z_{23} \,\mathbf{\hat{z}}$ (6e) Te XI
$\mathbf{B_{113}}$ = $x_{24} \, \mathbf{a}_{1}+y_{24} \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{24} + y_{24}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{24} - y_{24}\right) \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ (12f) Ta XIII
$\mathbf{B_{114}}$ = $- y_{24} \, \mathbf{a}_{1}+\left(x_{24} - y_{24}\right) \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{24} - 2 y_{24}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{24} \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ (12f) Ta XIII
$\mathbf{B_{115}}$ = $- \left(x_{24} - y_{24}\right) \, \mathbf{a}_{1}- x_{24} \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{24} - y_{24}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{24} \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ (12f) Ta XIII
$\mathbf{B_{116}}$ = $- x_{24} \, \mathbf{a}_{1}- y_{24} \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{24} + y_{24}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{24} - y_{24}\right) \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ (12f) Ta XIII
$\mathbf{B_{117}}$ = $y_{24} \, \mathbf{a}_{1}- \left(x_{24} - y_{24}\right) \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{24} + 2 y_{24}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{24} \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ (12f) Ta XIII
$\mathbf{B_{118}}$ = $\left(x_{24} - y_{24}\right) \, \mathbf{a}_{1}+x_{24} \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{24} - y_{24}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{24} \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ (12f) Ta XIII
$\mathbf{B_{119}}$ = $- y_{24} \, \mathbf{a}_{1}- x_{24} \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{24} + y_{24}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{24} - y_{24}\right) \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ (12f) Ta XIII
$\mathbf{B_{120}}$ = $- \left(x_{24} - y_{24}\right) \, \mathbf{a}_{1}+y_{24} \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{24} + 2 y_{24}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{24} \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ (12f) Ta XIII
$\mathbf{B_{121}}$ = $x_{24} \, \mathbf{a}_{1}+\left(x_{24} - y_{24}\right) \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{24} - y_{24}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{24} \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ (12f) Ta XIII
$\mathbf{B_{122}}$ = $y_{24} \, \mathbf{a}_{1}+x_{24} \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{24} + y_{24}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{24} - y_{24}\right) \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ (12f) Ta XIII
$\mathbf{B_{123}}$ = $\left(x_{24} - y_{24}\right) \, \mathbf{a}_{1}- y_{24} \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{24} - 2 y_{24}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{24} \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ (12f) Ta XIII
$\mathbf{B_{124}}$ = $- x_{24} \, \mathbf{a}_{1}- \left(x_{24} - y_{24}\right) \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{24} - y_{24}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{24} \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ (12f) Ta XIII
$\mathbf{B_{125}}$ = $x_{25} \, \mathbf{a}_{1}+y_{25} \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{25} + y_{25}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{25} - y_{25}\right) \,\mathbf{\hat{y}}+c z_{25} \,\mathbf{\hat{z}}$ (12f) Ta XIV
$\mathbf{B_{126}}$ = $- y_{25} \, \mathbf{a}_{1}+\left(x_{25} - y_{25}\right) \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{25} - 2 y_{25}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{25} \,\mathbf{\hat{y}}+c z_{25} \,\mathbf{\hat{z}}$ (12f) Ta XIV
$\mathbf{B_{127}}$ = $- \left(x_{25} - y_{25}\right) \, \mathbf{a}_{1}- x_{25} \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{25} - y_{25}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{25} \,\mathbf{\hat{y}}+c z_{25} \,\mathbf{\hat{z}}$ (12f) Ta XIV
$\mathbf{B_{128}}$ = $- x_{25} \, \mathbf{a}_{1}- y_{25} \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{25} + y_{25}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{25} - y_{25}\right) \,\mathbf{\hat{y}}+c z_{25} \,\mathbf{\hat{z}}$ (12f) Ta XIV
$\mathbf{B_{129}}$ = $y_{25} \, \mathbf{a}_{1}- \left(x_{25} - y_{25}\right) \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{25} + 2 y_{25}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{25} \,\mathbf{\hat{y}}+c z_{25} \,\mathbf{\hat{z}}$ (12f) Ta XIV
$\mathbf{B_{130}}$ = $\left(x_{25} - y_{25}\right) \, \mathbf{a}_{1}+x_{25} \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{25} - y_{25}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{25} \,\mathbf{\hat{y}}+c z_{25} \,\mathbf{\hat{z}}$ (12f) Ta XIV
$\mathbf{B_{131}}$ = $- y_{25} \, \mathbf{a}_{1}- x_{25} \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{25} + y_{25}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{25} - y_{25}\right) \,\mathbf{\hat{y}}+c z_{25} \,\mathbf{\hat{z}}$ (12f) Ta XIV
$\mathbf{B_{132}}$ = $- \left(x_{25} - y_{25}\right) \, \mathbf{a}_{1}+y_{25} \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{25} + 2 y_{25}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{25} \,\mathbf{\hat{y}}+c z_{25} \,\mathbf{\hat{z}}$ (12f) Ta XIV
$\mathbf{B_{133}}$ = $x_{25} \, \mathbf{a}_{1}+\left(x_{25} - y_{25}\right) \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{25} - y_{25}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{25} \,\mathbf{\hat{y}}+c z_{25} \,\mathbf{\hat{z}}$ (12f) Ta XIV
$\mathbf{B_{134}}$ = $y_{25} \, \mathbf{a}_{1}+x_{25} \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{25} + y_{25}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{25} - y_{25}\right) \,\mathbf{\hat{y}}+c z_{25} \,\mathbf{\hat{z}}$ (12f) Ta XIV
$\mathbf{B_{135}}$ = $\left(x_{25} - y_{25}\right) \, \mathbf{a}_{1}- y_{25} \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{25} - 2 y_{25}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{25} \,\mathbf{\hat{y}}+c z_{25} \,\mathbf{\hat{z}}$ (12f) Ta XIV
$\mathbf{B_{136}}$ = $- x_{25} \, \mathbf{a}_{1}- \left(x_{25} - y_{25}\right) \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{25} - y_{25}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{25} \,\mathbf{\hat{y}}+c z_{25} \,\mathbf{\hat{z}}$ (12f) Ta XIV

References

  • M. Conrad, F. Krumeich, C. Reich, and B. Harbrecht, Hexagonal approximants of a dodecagonal tantalum telluride – the crystal structure of Ta$_{21}$Te$_{13}$}, msea \textbf{294-296, 37–40 (2000), doi:10.1016/S0921-5093(00)01150-3.

Found in

  • P. Villars, K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, N. Melnichenko-Koblyuk, O. Pavlyuk, I. Savesyuk, S. Stoiko, and L. Sysa, Landolt-Börnstein - Group III Condensed Matter 43A4 (Springer-Verlag, Berlin Heidelberg, 2006), chap. Structure Types. Part 4: Space Groups (189) P-62m - (174) P-6. Ta$_2$$_1$Te$_1$$_3$, doi:10.1007/10920527_353.

Prototype Generator

aflow --proto=A21B13_hP136_183_abc3d6e2f_2ab3d5e --params=$a,c/a,z_{1},z_{2},z_{3},z_{4},z_{5},z_{6},x_{7},z_{7},x_{8},z_{8},x_{9},z_{9},x_{10},z_{10},x_{11},z_{11},x_{12},z_{12},x_{13},z_{13},x_{14},z_{14},x_{15},z_{15},x_{16},z_{16},x_{17},z_{17},x_{18},z_{18},x_{19},z_{19},x_{20},z_{20},x_{21},z_{21},x_{22},z_{22},x_{23},z_{23},x_{24},y_{24},z_{24},x_{25},y_{25},z_{25}$

Species:

Running:

Output: