Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A12B_hP13_191_cdei_a-001

This structure originally had the label A12B_hP13_191_cdei_a. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/FEUM
or https://aflow.org/p/A12B_hP13_191_cdei_a-001
or PDF Version

$D2_{a}$ (approximate TiBe$_{12}$) Structure: A12B_hP13_191_cdei_a-001

Picture of Structure; Click for Big Picture
Prototype Be$_{12}$Ti
AFLOW prototype label A12B_hP13_191_cdei_a-001
Strukturbericht designation $D2_{a}$
ICSD 58745
Pearson symbol hP13
Space group number 191
Space group symbol $P6/mmm$
AFLOW prototype command aflow --proto=A12B_hP13_191_cdei_a-001
--params=$a, \allowbreak c/a, \allowbreak z_{4}, \allowbreak z_{5}$

  • The structure of TiBe$_{12}$ is not settled. (Raeuchle, 1952) described the structure as a somewhat disordered supercell containing 48 atoms with lattice constants $a = 29.44$Å and $c = 7.33$Å, but they stated that a ‘pseudo-cell’ existed with dimensions $a = 4.23$Å and $c = 7.33$Å. This pseudo-cell is described here, and was designated Strukturbericht $D2_{a}$ by Smithells (Brandes, 1992). Rauchle and Rundle suggested that the larger primitive cell was constructed from the multiple pseudo-cells, with the titanium atom alternating between the $(1a)$ and $(1b)$ Wyckoff positions.
  • Other experimenters have suggested that the actual structure of TiBe$_{12}$ is tetragonal. (Jackson, 2016) presents first-principles calculations which suggest that the actual structure is the tetragonal ThMn$_{12}$ ($D2_{b}$) type.
  • HfFe$_{6}$Ge$_{6}$ is the ternary form of this structure.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Ti I
$\mathbf{B_{2}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ (2c) Be I
$\mathbf{B_{3}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ (2c) Be I
$\mathbf{B_{4}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2d) Be II
$\mathbf{B_{5}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2d) Be II
$\mathbf{B_{6}}$ = $z_{4} \, \mathbf{a}_{3}$ = $c z_{4} \,\mathbf{\hat{z}}$ (2e) Be III
$\mathbf{B_{7}}$ = $- z_{4} \, \mathbf{a}_{3}$ = $- c z_{4} \,\mathbf{\hat{z}}$ (2e) Be III
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (6i) Be IV
$\mathbf{B_{9}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (6i) Be IV
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{5} \,\mathbf{\hat{z}}$ (6i) Be IV
$\mathbf{B_{11}}$ = $\frac{1}{2} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (6i) Be IV
$\mathbf{B_{12}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (6i) Be IV
$\mathbf{B_{13}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{5} \,\mathbf{\hat{z}}$ (6i) Be IV

References

  • R. F. Raeuchle and R. E. Rundle, The Structure of TiBe$_{12}$, Acta Cryst. 5, 85–93 (1952), doi:10.1107/S0365110X52000186.
  • E. A. Brandes and G. B. Brook, eds., Smithells Metals Reference Book (Butterworth Heinemann, Oxford, Auckland, Boston, Johannesburg, Melbourne, New Delhi, 1992), seventh edn.

Found in

  • M. L. Jackson, P. A. Burr, and R. W. Grimes, Resolving the structure of TiBe$_{12}$, Acta Crystallogr. Sect. B 72, 277–280 (2016), doi:10.1107/S205252061600322X.

Prototype Generator

aflow --proto=A12B_hP13_191_cdei_a --params=$a,c/a,z_{4},z_{5}$

Species:

Running:

Output: