Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A10B_hP22_194_bhj_c-001

This structure originally had the label A10B_hP22_194_bhj_c. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/MK58
or https://aflow.org/p/A10B_hP22_194_bhj_c-001
or PDF Version

Proposed 300 GPa HfH$_{10}$ Structure: A10B_hP22_194_bhj_c-001

Picture of Structure; Click for Big Picture
Prototype H$_{10}$Hf
AFLOW prototype label A10B_hP22_194_bhj_c-001
ICSD none
Pearson symbol hP22
Space group number 194
Space group symbol $P6_3/mmc$
AFLOW prototype command aflow --proto=A10B_hP22_194_bhj_c-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak y_{4}$

Other compounds with this structure

LuH$_{10}$,  ScH$_{10}$,  ZrH$_{10}$


  • This structure has only been determined computationally. At 300 GPa it is predicted to have a superconducting transitions temperature $T_{c}$ above 200K.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}c \,\mathbf{\hat{z}}$ (2b) H I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}c \,\mathbf{\hat{z}}$ (2b) H I
$\mathbf{B_{3}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (2c) Hf I
$\mathbf{B_{4}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (2c) Hf I
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+2 x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) H II
$\mathbf{B_{6}}$ = $- 2 x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) H II
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) H II
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}- 2 x_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) H II
$\mathbf{B_{9}}$ = $2 x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) H II
$\mathbf{B_{10}}$ = $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) H II
$\mathbf{B_{11}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (12j) H III
$\mathbf{B_{12}}$ = $- y_{4} \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - 2 y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (12j) H III
$\mathbf{B_{13}}$ = $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (12j) H III
$\mathbf{B_{14}}$ = $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (12j) H III
$\mathbf{B_{15}}$ = $y_{4} \, \mathbf{a}_{1}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{4} + 2 y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (12j) H III
$\mathbf{B_{16}}$ = $\left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (12j) H III
$\mathbf{B_{17}}$ = $y_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (12j) H III
$\mathbf{B_{18}}$ = $\left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - 2 y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (12j) H III
$\mathbf{B_{19}}$ = $- x_{4} \, \mathbf{a}_{1}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (12j) H III
$\mathbf{B_{20}}$ = $- y_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (12j) H III
$\mathbf{B_{21}}$ = $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{4} + 2 y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (12j) H III
$\mathbf{B_{22}}$ = $x_{4} \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (12j) H III

References

  • H. Xie, Y. Yao, X. Feng, D. Duan, H. Song, Z. Zhang, S. Jiang, S. A. T. Redfern, V. Z. Kresin, C. J. Pickard, and T. Cui, Hydrogen Pentagraphenelike Structure Stabilized by Hafnium: A High-Temperature Conventional Superconductor, Phys. Rev. Lett. 125, 217001 (2020), doi:10.1103/PhysRevLett.125.217001.

Prototype Generator

aflow --proto=A10B_hP22_194_bhj_c --params=$a,c/a,x_{3},x_{4},y_{4}$

Species:

Running:

Output: