Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A_tP16_138_j-001

This structure originally had the label A_tP16_138_j. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/ZBJR
or https://aflow.org/p/A_tP16_138_j-001
or PDF Version

Cl ($A18$) Structure (Obsolete): A_tP16_138_j-001

Picture of Structure; Click for Big Picture
Prototype Cl
AFLOW prototype label A_tP16_138_j-001
Strukturbericht designation $A18$
ICSD 22406
Pearson symbol tP16
Space group number 138
Space group symbol $P4_2/ncm$
AFLOW prototype command aflow --proto=A_tP16_138_j-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak z_{1}$

  • As given, this structure has a Cl-Cl bond distance of 1.82Å, far too small for chlorine. The structure was eventually reanalyzed, and found to be similar to molecular iodine ($A14$). See (Donohue, 1982, p. 396) for details. We retain this structure for its historical interest. Note that all atoms are on the general sites of space group $P4_{2}/ncm$ #138.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+a y_{1} \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (16j) Cl I
$\mathbf{B_{2}}$ = $- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (16j) Cl I
$\mathbf{B_{3}}$ = $- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16j) Cl I
$\mathbf{B_{4}}$ = $y_{1} \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{1} \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16j) Cl I
$\mathbf{B_{5}}$ = $- x_{1} \, \mathbf{a}_{1}+\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}+a \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{1} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16j) Cl I
$\mathbf{B_{6}}$ = $\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}- \left(z_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{1} \,\mathbf{\hat{y}}- c \left(z_{1} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16j) Cl I
$\mathbf{B_{7}}$ = $\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ = $a \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ (16j) Cl I
$\mathbf{B_{8}}$ = $- y_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ = $- a y_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ (16j) Cl I
$\mathbf{B_{9}}$ = $- x_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}- a y_{1} \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ (16j) Cl I
$\mathbf{B_{10}}$ = $\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ (16j) Cl I
$\mathbf{B_{11}}$ = $\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- \left(z_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}- c \left(z_{1} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16j) Cl I
$\mathbf{B_{12}}$ = $- y_{1} \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{1} \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{1} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16j) Cl I
$\mathbf{B_{13}}$ = $x_{1} \, \mathbf{a}_{1}- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}- a \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16j) Cl I
$\mathbf{B_{14}}$ = $- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{1} \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16j) Cl I
$\mathbf{B_{15}}$ = $- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $- a \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (16j) Cl I
$\mathbf{B_{16}}$ = $y_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $a y_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (16j) Cl I

References

Found in

  • J. Donohue, The Structures of the Elements (Robert E. Krieger Publishing Company, New York, 1974).

Prototype Generator

aflow --proto=A_tP16_138_j --params=$a,c/a,x_{1},y_{1},z_{1}$

Species:

Running:

Output: