Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB_mP6_10_bn_cm-001

This structure originally had the label AB_mP6_10_en_am. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/QVV1
or https://aflow.org/p/AB_mP6_10_bn_cm-001
or PDF Version

α-LiSn Structure: AB_mP6_10_bn_cm-001

Picture of Structure; Click for Big Picture
Prototype LiSn
AFLOW prototype label AB_mP6_10_bn_cm-001
ICSD 104782
Pearson symbol mP6
Space group number 10
Space group symbol $P2/m$
AFLOW prototype command aflow --proto=AB_mP6_10_bn_cm-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}$

  • This is the low-temperature structure of LiSn. Above 470K LiSn may transform into the tetragonal $\beta$–LiSn structure (Villars, 2018). This structure is apparently metastable at room temperature (Blase, 1990).
  • (Müller, 1973) give this structure in the unique axis-$c$ setting of space group $P2_{1}/m$ #11. We used FINDSYM to transform this to the standard unique axis-$b$ setting. This involves an origin shift.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}b \,\mathbf{\hat{y}}$ (1b) Li I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \cos{\beta} \,\mathbf{\hat{x}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ (1c) Sn I
$\mathbf{B_{3}}$ = $x_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{3}$ = $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (2m) Sn II
$\mathbf{B_{4}}$ = $- x_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{3}$ = $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (2m) Sn II
$\mathbf{B_{5}}$ = $x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (2n) Li II
$\mathbf{B_{6}}$ = $- x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (2n) Li II

References

  • W. Müller and H. Schäfer, Die Kristallstruktur der Phase LiSn, Z. Naturforsch. B 28, 246–248 (1973), doi:10.1515/znb-1973-5-604.
  • P. Villars, H. Okamoto, and K. Cenzual, eds., ASM Alloy Phase Diagram Database (ASM International, 2018), chap. Lithium-Tin Binary Phase Diagram (1998 Sangster J.). Copyright © 2006-2018 ASM International.

Prototype Generator

aflow --proto=AB_mP6_10_bn_cm --params=$a,b/a,c/a,\beta,x_{3},z_{3},x_{4},z_{4}$

Species:

Running:

Output: