Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB5_mC48_12_2i_ac5i2j-001

This structure originally had the label AB5_mC48_12_2i_ac5i2j. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/5R9K
or https://aflow.org/p/AB5_mC48_12_2i_ac5i2j-001
or PDF Version

$D2_{2}$ (MgZn$_{5}$?) Structure (Problematic): AB5_mC48_12_2i_ac5i2j-001

Picture of Structure; Click for Big Picture
Prototype MgZn$_{5}$
AFLOW prototype label AB5_mC48_12_2i_ac5i2j-001
Strukturbericht designation $D2_{2}$
ICSD 151403
Pearson symbol mC48
Space group number 12
Space group symbol $C2/m$
AFLOW prototype command aflow --proto=AB5_mC48_12_2i_ac5i2j-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}$

  • This structure has problems similar to the $B30$ MgZn structure, and for the same reasons. (Hermann, 1937) assigned this the Strukturbericht designation $D2_{2}$, based on the paper of (Tarschish, 1933), who derived it from the hexagonal Laves structure MgZn$_{2}$ (C14), eventually resulting in a 48 atom cell with composition MgZn$_{5}$. As with MgZn, he assumed that the space group remained $P6_{3}/mmc$ #194.
  • (McKeehan, 1935) again pointed out that this is impossible. (Hermann, 1937) referenced both papers, giving the space group as $P6_{3}/mmc$ but listing the atomic coordinates enumerated by McKeehan.
  • The McKeehan structure has space group $C2/m$ #12, with 48 atoms in the conventional cell, and 24 atoms in the primitive cell. As with $B30$, this agrees with the structure (Parthé, 1993) designated as $D2_{2}$.
  • It is not clear that any MgZn$_{5}$ compound actually exists. It does not appear in the assessed Mg-Zn binary phase diagram (Massalski, 1990). It may actually be the Mg$_{2}$Zn$_{11}$ $D8_{c}$ structure, but we have found no literature supporting this claim.
  • The ICSD entry is from (Tarschish, 1933). It gives the atomic positions in space group $P1$ #1, but AFLOW finds that the structure is in space group $C2/m$ #12, as found from our analysis of (McKeehan, 1935). Unsurprisingly, this structure does not agree with our interpretation of the data.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Zn I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \cos{\beta} \,\mathbf{\hat{x}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ (2c) Zn II
$\mathbf{B_{3}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Mg I
$\mathbf{B_{4}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Mg I
$\mathbf{B_{5}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Mg II
$\mathbf{B_{6}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Mg II
$\mathbf{B_{7}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Zn III
$\mathbf{B_{8}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Zn III
$\mathbf{B_{9}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Zn IV
$\mathbf{B_{10}}$ = $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- \left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Zn IV
$\mathbf{B_{11}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Zn V
$\mathbf{B_{12}}$ = $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- \left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Zn V
$\mathbf{B_{13}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Zn VI
$\mathbf{B_{14}}$ = $- x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- \left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Zn VI
$\mathbf{B_{15}}$ = $x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Zn VII
$\mathbf{B_{16}}$ = $- x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- \left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Zn VII
$\mathbf{B_{17}}$ = $\left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ (8j) Zn VIII
$\mathbf{B_{18}}$ = $- \left(x_{10} + y_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- \left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}- c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ (8j) Zn VIII
$\mathbf{B_{19}}$ = $- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} + y_{10}\right) \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- \left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}- c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ (8j) Zn VIII
$\mathbf{B_{20}}$ = $\left(x_{10} + y_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}+c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ (8j) Zn VIII
$\mathbf{B_{21}}$ = $\left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} + y_{11}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}+c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ (8j) Zn IX
$\mathbf{B_{22}}$ = $- \left(x_{11} + y_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- \left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}- c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ (8j) Zn IX
$\mathbf{B_{23}}$ = $- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} + y_{11}\right) \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- \left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}- c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ (8j) Zn IX
$\mathbf{B_{24}}$ = $\left(x_{11} + y_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}+c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ (8j) Zn IX

References

  • C. Hermann, O. Lohrmann, and H. Philipp, eds., Strukturbericht Band II 1928-1932 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).
  • L. Tarschisch, Röntgenographische Untersuchung der Verbindungen MgZn und MgZn$_{5}$, Z. Kristallogr. 86, 423–438 (1933), doi:10.1524/zkri.1933.86.1.423.
  • L. W. McKeehan, Note on MgZn and MgZn$_{5}$}, Z. Kristallogr. 91, 501–503 (1935), doi:10.1524/zkri.1935.91.1.501.
  • \bibitem{parthe93:TYPIXE. Parthé, L. Gelato, B. Chabot, M. Penso, K. Cenzula, and R. Gladyshevskii, Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Gmelin Handbook of Inorganic and Organometallic Chemistry}, vol. 2 (Springer-Verlag, Berlin, Heidelberg, 1993), 8 edn., doi:10.1007/978-3-662-02909-1_3.\bibAnnoteFile{parthe93:TYPIX
  • T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, eds., Binary Alloy Phase Diagrams}, vol. 3 (ASM International, Materials Park, Ohio, USA, 1990), 2$^{nd$ edn. Hf-Re to Zn-Zr.
  • M. Mezbahul-Islam, A. O. Mostafa, and M. Medraj, Essential Magnesium Alloys Binary Phase Diagrams and Their Thermochemical Data, J. Mater. 2014, 704283 (2014), doi:10.1155/2014/704283.

Prototype Generator

aflow --proto=AB5_mC48_12_2i_ac5i2j --params=$a,b/a,c/a,\beta,x_{3},z_{3},x_{4},z_{4},x_{5},z_{5},x_{6},z_{6},x_{7},z_{7},x_{8},z_{8},x_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11}$

Species:

Running:

Output: