AFLOW Prototype: AB5C_tP7_123_b_ci_a-001
This structure originally had the label AB5C_tP7_123_b_ci_a. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/SBCX
or
https://aflow.org/p/AB5C_tP7_123_b_ci_a-001
or
PDF Version
Prototype | CoGa$_{5}$Ho |
AFLOW prototype label | AB5C_tP7_123_b_ci_a-001 |
ICSD | 42427 |
Pearson symbol | tP7 |
Space group number | 123 |
Space group symbol | $P4/mmm$ |
AFLOW prototype command |
aflow --proto=AB5C_tP7_123_b_ci_a-001
--params=$a, \allowbreak c/a, \allowbreak z_{4}$ |
CeRhIn$_{5}$, CeCoIn$_{5}$, DyCoGa$_{5}$, ErCoGa$_{5}$, GdCoGa$_{5}$, LuCoGa$_{5}$, TbCoGa$_{5}$, TmCoGa$_{5}$, UCoGa$_{5}$, YCoGa$_{5}$, CoIrIn$_{5}$, CoRhIn$_{5}$, LaCoIn$_{5}$, LaIrIn$_{5}$, LaRhIn$_{5}$, PrCoIn$_{5}$, PrIrIn$_{5}$, PrRhIn$_{5}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Ho I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (1b) | Co I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ | (1c) | Ga I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (4i) | Ga II |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{4} \,\mathbf{\hat{z}}$ | (4i) | Ga II |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (4i) | Ga II |
$\mathbf{B_{7}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{4} \,\mathbf{\hat{z}}$ | (4i) | Ga II |