AFLOW Prototype: AB4C24D12_tI82_87_a_h_2h2i_hi-001
This structure originally had the label AB4C24D12_tI82_87_a_h_2h2i_hi. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/8NAD
or
https://aflow.org/p/AB4C24D12_tI82_87_a_h_2h2i_hi-001
or
PDF Version
Prototype | Al$_{3}$ClNa$_{4}$O$_{24}$Si$_{9}$ |
AFLOW prototype label | AB4C24D12_tI82_87_a_h_2h2i_hi-001 |
Strukturbericht designation | $S6_{4}$ |
Mineral name | marialite scapolite |
ICSD | 9502 |
Pearson symbol | tI82 |
Space group number | 87 |
Space group symbol | $I4/m$ |
AFLOW prototype command |
aflow --proto=AB4C24D12_tI82_87_a_h_2h2i_hi-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}$ |
marialitescapolite distinguishes this from meionite scapolite, which replaces the sodium atoms by calcium but also includes SiO$_{4}$ and CO$_{3}$, which replace the chlorine atoms. According to Pauli,
The minerals of the scapolite group can be considered as solid solution of two end-members, marialite, Na$_{4}$Al$_{3}$Si$_{9}$O$_{24}$Cl, and meionite, Ca$_{4}$Al$_{6}$Si$_{6}$O$_{24}$(SO$_{4}$,CO$_{3}$), in various proportions.
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Cl I |
$\mathbf{B_{2}}$ | = | $y_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\left(x_{2} + y_{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}$ | (8h) | Na I |
$\mathbf{B_{3}}$ | = | $- y_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}$ | (8h) | Na I |
$\mathbf{B_{4}}$ | = | $x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{3}$ | = | $- a y_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}$ | (8h) | Na I |
$\mathbf{B_{5}}$ | = | $- x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{3}$ | = | $a y_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}$ | (8h) | Na I |
$\mathbf{B_{6}}$ | = | $y_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}$ | (8h) | O I |
$\mathbf{B_{7}}$ | = | $- y_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- \left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}$ | (8h) | O I |
$\mathbf{B_{8}}$ | = | $x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}$ | (8h) | O I |
$\mathbf{B_{9}}$ | = | $- x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}$ | (8h) | O I |
$\mathbf{B_{10}}$ | = | $y_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}$ | (8h) | O II |
$\mathbf{B_{11}}$ | = | $- y_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}$ | (8h) | O II |
$\mathbf{B_{12}}$ | = | $x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}$ | (8h) | O II |
$\mathbf{B_{13}}$ | = | $- x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}$ | (8h) | O II |
$\mathbf{B_{14}}$ | = | $y_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+\left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}$ | (8h) | Si I |
$\mathbf{B_{15}}$ | = | $- y_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}$ | (8h) | Si I |
$\mathbf{B_{16}}$ | = | $x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ | = | $- a y_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}$ | (8h) | Si I |
$\mathbf{B_{17}}$ | = | $- x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ | = | $a y_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}$ | (8h) | Si I |
$\mathbf{B_{18}}$ | = | $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (16i) | O III |
$\mathbf{B_{19}}$ | = | $- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (16i) | O III |
$\mathbf{B_{20}}$ | = | $\left(x_{6} + z_{6}\right) \, \mathbf{a}_{1}- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ | = | $- a y_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (16i) | O III |
$\mathbf{B_{21}}$ | = | $- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ | = | $a y_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (16i) | O III |
$\mathbf{B_{22}}$ | = | $- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (16i) | O III |
$\mathbf{B_{23}}$ | = | $\left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (16i) | O III |
$\mathbf{B_{24}}$ | = | $- \left(x_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(y_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ | = | $a y_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (16i) | O III |
$\mathbf{B_{25}}$ | = | $\left(x_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ | = | $- a y_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (16i) | O III |
$\mathbf{B_{26}}$ | = | $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (16i) | O IV |
$\mathbf{B_{27}}$ | = | $- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (16i) | O IV |
$\mathbf{B_{28}}$ | = | $\left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ | = | $- a y_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (16i) | O IV |
$\mathbf{B_{29}}$ | = | $- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ | = | $a y_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (16i) | O IV |
$\mathbf{B_{30}}$ | = | $- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (16i) | O IV |
$\mathbf{B_{31}}$ | = | $\left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (16i) | O IV |
$\mathbf{B_{32}}$ | = | $- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ | = | $a y_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (16i) | O IV |
$\mathbf{B_{33}}$ | = | $\left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ | = | $- a y_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (16i) | O IV |
$\mathbf{B_{34}}$ | = | $\left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (16i) | Si II |
$\mathbf{B_{35}}$ | = | $- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (16i) | Si II |
$\mathbf{B_{36}}$ | = | $\left(x_{8} + z_{8}\right) \, \mathbf{a}_{1}- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ | = | $- a y_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (16i) | Si II |
$\mathbf{B_{37}}$ | = | $- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{1}+\left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ | = | $a y_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (16i) | Si II |
$\mathbf{B_{38}}$ | = | $- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} + z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (16i) | Si II |
$\mathbf{B_{39}}$ | = | $\left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (16i) | Si II |
$\mathbf{B_{40}}$ | = | $- \left(x_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ | = | $a y_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (16i) | Si II |
$\mathbf{B_{41}}$ | = | $\left(x_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ | = | $- a y_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (16i) | Si II |