Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB4C24D12_tI82_87_a_h_2h2i_hi-001

This structure originally had the label AB4C24D12_tI82_87_a_h_2h2i_hi. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/8NAD
or https://aflow.org/p/AB4C24D12_tI82_87_a_h_2h2i_hi-001
or PDF Version

Marialite Scapolite [Na$_{4}$Cl(AlSi$_{3}$)$_{3}$O$_{24}$, $S6_{4}$] Structure: AB4C24D12_tI82_87_a_h_2h2i_hi-001

Picture of Structure; Click for Big Picture
Prototype Al$_{3}$ClNa$_{4}$O$_{24}$Si$_{9}$
AFLOW prototype label AB4C24D12_tI82_87_a_h_2h2i_hi-001
Strukturbericht designation $S6_{4}$
Mineral name marialite scapolite
ICSD 9502
Pearson symbol tI82
Space group number 87
Space group symbol $I4/m$
AFLOW prototype command aflow --proto=AB4C24D12_tI82_87_a_h_2h2i_hi-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}$

  • (Papike, 1965) found that the composition of the Si-II (16h) site was actually Al$_{0.458}$Si$_{0.542}$, and which we list as silicon. This is richer in aluminum than assumed by Pauli, who gave the total aluminum/silicon composition as AlSi$_{3}$. If we assume that the Si-I (8h) site is only filled by silicon atoms, then Pauli's composition for the Si-II site is Al$_{0.375}$Si$_{0.625}$. The name marialite scapolite distinguishes this from meionite scapolite, which replaces the sodium atoms by calcium but also includes SiO$_{4}$ and CO$_{3}$, which replace the chlorine atoms. According to Pauli, The minerals of the scapolite group can be considered as solid solution of two end-members, marialite, Na$_{4}$Al$_{3}$Si$_{9}$O$_{24}$Cl, and meionite, Ca$_{4}$Al$_{6}$Si$_{6}$O$_{24}$(SO$_{4}$,CO$_{3}$), in various proportions.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Cl I
$\mathbf{B_{2}}$ = $y_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\left(x_{2} + y_{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}$ (8h) Na I
$\mathbf{B_{3}}$ = $- y_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}$ (8h) Na I
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}$ (8h) Na I
$\mathbf{B_{5}}$ = $- x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}$ (8h) Na I
$\mathbf{B_{6}}$ = $y_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}$ (8h) O I
$\mathbf{B_{7}}$ = $- y_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- \left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}$ (8h) O I
$\mathbf{B_{8}}$ = $x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}$ (8h) O I
$\mathbf{B_{9}}$ = $- x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}$ (8h) O I
$\mathbf{B_{10}}$ = $y_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}$ (8h) O II
$\mathbf{B_{11}}$ = $- y_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}$ (8h) O II
$\mathbf{B_{12}}$ = $x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}$ (8h) O II
$\mathbf{B_{13}}$ = $- x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}$ (8h) O II
$\mathbf{B_{14}}$ = $y_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+\left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}$ (8h) Si I
$\mathbf{B_{15}}$ = $- y_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}$ (8h) Si I
$\mathbf{B_{16}}$ = $x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}$ (8h) Si I
$\mathbf{B_{17}}$ = $- x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}$ (8h) Si I
$\mathbf{B_{18}}$ = $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (16i) O III
$\mathbf{B_{19}}$ = $- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (16i) O III
$\mathbf{B_{20}}$ = $\left(x_{6} + z_{6}\right) \, \mathbf{a}_{1}- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (16i) O III
$\mathbf{B_{21}}$ = $- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (16i) O III
$\mathbf{B_{22}}$ = $- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (16i) O III
$\mathbf{B_{23}}$ = $\left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (16i) O III
$\mathbf{B_{24}}$ = $- \left(x_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(y_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (16i) O III
$\mathbf{B_{25}}$ = $\left(x_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (16i) O III
$\mathbf{B_{26}}$ = $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (16i) O IV
$\mathbf{B_{27}}$ = $- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (16i) O IV
$\mathbf{B_{28}}$ = $\left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (16i) O IV
$\mathbf{B_{29}}$ = $- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (16i) O IV
$\mathbf{B_{30}}$ = $- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (16i) O IV
$\mathbf{B_{31}}$ = $\left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (16i) O IV
$\mathbf{B_{32}}$ = $- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (16i) O IV
$\mathbf{B_{33}}$ = $\left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (16i) O IV
$\mathbf{B_{34}}$ = $\left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (16i) Si II
$\mathbf{B_{35}}$ = $- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (16i) Si II
$\mathbf{B_{36}}$ = $\left(x_{8} + z_{8}\right) \, \mathbf{a}_{1}- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (16i) Si II
$\mathbf{B_{37}}$ = $- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{1}+\left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (16i) Si II
$\mathbf{B_{38}}$ = $- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} + z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (16i) Si II
$\mathbf{B_{39}}$ = $\left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (16i) Si II
$\mathbf{B_{40}}$ = $- \left(x_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (16i) Si II
$\mathbf{B_{41}}$ = $\left(x_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (16i) Si II

References

  • J. J. Papike and T. Zoltai, The crystal structure of a marialite scapolite, Am. Mineral. 50, 641–655 (1965).
  • L. Pauling, The Structure of Some Sodium nd Calcium Aluminosilicates, Proc. Natl. Acad. Sci. 16, 453–459 (1930), doi:10.1073/pnas.16.7.453.

Prototype Generator

aflow --proto=AB4C24D12_tI82_87_a_h_2h2i_hi --params=$a,c/a,x_{2},y_{2},x_{3},y_{3},x_{4},y_{4},x_{5},y_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8}$

Species:

Running:

Output: