Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB3_tP8_113_a_ce-001

This structure originally had the label AB3_tP8_113_a_ce. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/0A77
or https://aflow.org/p/AB3_tP8_113_a_ce-001
or PDF Version

BaS$_{3}$ ($D0_{17}$) Structure: AB3_tP8_113_a_ce-001

Picture of Structure; Click for Big Picture
Prototype BaS$_{3}$
AFLOW prototype label AB3_tP8_113_a_ce-001
Strukturbericht designation $D0_{17}$
ICSD 70059
Pearson symbol tP8
Space group number 113
Space group symbol $P\overline{4}2_1m$
AFLOW prototype command aflow --proto=AB3_tP8_113_a_ce-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak z_{3}$

Other compounds with this structure

AgDyTe$_{2}$,  AgHgTe$_{2}$,  AgErTe$_{2}$,  AgTe$_{2}$Tm,  AgGdTe$_{2}$,  AgTe$_{2}$Y,  BaSe$_{3}$,  BaTe$_{3}$


  • (Gottfried, 1938) originally gave the $D0_{17}$ label to the $P2_12_12$ #94 BaS$_{3}$ structure, however we follow (Partheé, 1993), who uses the current structure as the $D0_{17}$ prototype.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Ba I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (2a) Ba I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (2c) S I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{2} \,\mathbf{\hat{z}}$ (2c) S I
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4e) S II
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4e) S II
$\mathbf{B_{7}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (4e) S II
$\mathbf{B_{8}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (4e) S II

References

  • S. Yamaoka, J. T. Lemley, J. M. Jenks, and H. Steinfink, Structural chemistry of the polysulfides dibarium trisulfide and monobarium trisulfide}, Inorg. Chem. 14, 129–131 (1975), doi:10.1021/ic50143a027.
  • \bibitem{parthe93:TYPIXE. Parthé, L. Gelato, B. Chabot, M. Penso, K. Cenzula, and R. Gladyshevskii, Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Gmelin Handbook of Inorganic and Organometallic Chemistry}, vol. 2 (Springer-Verlag, Berlin, Heidelberg, 1993), 8 edn., doi:10.1007/978-3-662-02909-1_3.\bibAnnoteFile{parthe93:TYPIX
  • C. Gottfried, ed., Strukturbericht Band IV 1936 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1938).

Found in

  • P. Villars and L. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH, 1991), 2nd edn.

Prototype Generator

aflow --proto=AB3_tP8_113_a_ce --params=$a,c/a,z_{2},x_{3},z_{3}$

Species:

Running:

Output: