AFLOW Prototype: AB3_tP32_133_h_i2j-001
This structure originally had the label AB3_tP32_133_h_i2j. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/2PY4
or
https://aflow.org/p/AB3_tP32_133_h_i2j-001
or
PDF Version
Prototype | SV$_{3}$ |
AFLOW prototype label | AB3_tP32_133_h_i2j-001 |
ICSD | 26516 |
Pearson symbol | tP32 |
Space group number | 133 |
Space group symbol | $P4_2/nbc$ |
AFLOW prototype command |
aflow --proto=AB3_tP32_133_h_i2j-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}$ |
$\beta$-Ta$_{3}$P
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ | = | $a x_{1} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ | (8h) | S I |
$\mathbf{B_{2}}$ | = | $- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ | = | $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ | (8h) | S I |
$\mathbf{B_{3}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8h) | S I |
$\mathbf{B_{4}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8h) | S I |
$\mathbf{B_{5}}$ | = | $- x_{1} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ | = | $- a x_{1} \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}$ | (8h) | S I |
$\mathbf{B_{6}}$ | = | $\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ | = | $a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}$ | (8h) | S I |
$\mathbf{B_{7}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8h) | S I |
$\mathbf{B_{8}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8h) | S I |
$\mathbf{B_{9}}$ | = | $x_{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8i) | V I |
$\mathbf{B_{10}}$ | = | $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8i) | V I |
$\mathbf{B_{11}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}$ | (8i) | V I |
$\mathbf{B_{12}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}$ | (8i) | V I |
$\mathbf{B_{13}}$ | = | $- x_{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8i) | V I |
$\mathbf{B_{14}}$ | = | $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8i) | V I |
$\mathbf{B_{15}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}$ | (8i) | V I |
$\mathbf{B_{16}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ | (8i) | V I |
$\mathbf{B_{17}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8j) | V II |
$\mathbf{B_{18}}$ | = | $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8j) | V II |
$\mathbf{B_{19}}$ | = | $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8j) | V II |
$\mathbf{B_{20}}$ | = | $x_{3} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8j) | V II |
$\mathbf{B_{21}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8j) | V II |
$\mathbf{B_{22}}$ | = | $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8j) | V II |
$\mathbf{B_{23}}$ | = | $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8j) | V II |
$\mathbf{B_{24}}$ | = | $- x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8j) | V II |
$\mathbf{B_{25}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8j) | V III |
$\mathbf{B_{26}}$ | = | $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8j) | V III |
$\mathbf{B_{27}}$ | = | $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8j) | V III |
$\mathbf{B_{28}}$ | = | $x_{4} \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8j) | V III |
$\mathbf{B_{29}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8j) | V III |
$\mathbf{B_{30}}$ | = | $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8j) | V III |
$\mathbf{B_{31}}$ | = | $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8j) | V III |
$\mathbf{B_{32}}$ | = | $- x_{4} \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8j) | V III |