AFLOW Prototype: AB3_mP16_10_mn_3m3n-001
This structure originally had the label AB3_mP16_10_mn_3m3n. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/1EYW
or
https://aflow.org/p/AB3_mP16_10_mn_3m3n-001
or
PDF Version
Prototype | ClH$_{3}$ |
AFLOW prototype label | AB3_mP16_10_mn_3m3n-001 |
ICSD | none |
Pearson symbol | mP16 |
Space group number | 10 |
Space group symbol | $P2/m$ |
AFLOW prototype command |
aflow --proto=AB3_mP16_10_mn_3m3n-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak z_{8}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{3}$ | = | $\left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ | (2m) | Cl I |
$\mathbf{B_{2}}$ | = | $- x_{1} \, \mathbf{a}_{1}- z_{1} \, \mathbf{a}_{3}$ | = | $- \left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ | (2m) | Cl I |
$\mathbf{B_{3}}$ | = | $x_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{3}$ | = | $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ | (2m) | H I |
$\mathbf{B_{4}}$ | = | $- x_{2} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{3}$ | = | $- \left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ | (2m) | H I |
$\mathbf{B_{5}}$ | = | $x_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{3}$ | = | $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (2m) | H II |
$\mathbf{B_{6}}$ | = | $- x_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{3}$ | = | $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (2m) | H II |
$\mathbf{B_{7}}$ | = | $x_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{3}$ | = | $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ | (2m) | H III |
$\mathbf{B_{8}}$ | = | $- x_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{3}$ | = | $- \left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ | (2m) | H III |
$\mathbf{B_{9}}$ | = | $x_{5} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ | (2n) | Cl II |
$\mathbf{B_{10}}$ | = | $- x_{5} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ | (2n) | Cl II |
$\mathbf{B_{11}}$ | = | $x_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ | (2n) | H IV |
$\mathbf{B_{12}}$ | = | $- x_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $- \left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ | (2n) | H IV |
$\mathbf{B_{13}}$ | = | $x_{7} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ | (2n) | H V |
$\mathbf{B_{14}}$ | = | $- x_{7} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $- \left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ | (2n) | H V |
$\mathbf{B_{15}}$ | = | $x_{8} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ | (2n) | H VI |
$\mathbf{B_{16}}$ | = | $- x_{8} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $- \left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ | (2n) | H VI |