Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2C5D_tI36_140_a_h_cl_b-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/4VUW
or https://aflow.org/p/AB2C5D_tI36_140_a_h_cl_b-001
or PDF Version

BaLa$_{2}$ZnO$_{5}$ Structure: AB2C5D_tI36_140_a_h_cl_b-001

Picture of Structure; Click for Big Picture
Prototype BaLa$_{2}$O$_{5}$Zn
AFLOW prototype label AB2C5D_tI36_140_a_h_cl_b-001
ICSD 88598
Pearson symbol tI36
Space group number 140
Space group symbol $I4/mcm$
AFLOW prototype command aflow --proto=AB2C5D_tI36_140_a_h_cl_b-001
--params=$a, \allowbreak c/a, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak z_{5}$

Other compounds with this structure

BaNd$_{2}$MnS$_{5}$,  BaNd$_{2}$ZnO$_{5}$,  BaNd$_{2}$ZnS$_{5}$,  BaPr$_{2}$FeS$_{5}$,  BaPr$_{2}$ZnS$_{5}$,  BaSm$_{2}$FeS$_{5}$,  Ba$_{3}$SnS$_{5}$,  Ba$_{3}$TiS$_{5}$,  Eu$_{3}$AlO$_{5}$,  Sr$_{3}$AlO$_{5}$,  Sr$_{3}$GaO$_{4}$F,  Tl$_{3}$CoCl$_{5}$,  Tl$_{3}$FeCl$_{5}$,  Sr(Sr$_{0.5}$Gd$_{0.5}$)$_{2}$GaO$_{5}$



\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ = $\frac{1}{4}c \,\mathbf{\hat{z}}$ (4a) Ba I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ = $\frac{3}{4}c \,\mathbf{\hat{z}}$ (4a) Ba I
$\mathbf{B_{3}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4b) Zn I
$\mathbf{B_{4}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4b) Zn I
$\mathbf{B_{5}}$ = $0$ = $0$ (4c) O I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (4c) O I
$\mathbf{B_{7}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\left(2 x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8h) La I
$\mathbf{B_{8}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- \left(2 x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8h) La I
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}$ (8h) La I
$\mathbf{B_{10}}$ = $- x_{4} \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}$ (8h) La I
$\mathbf{B_{11}}$ = $\left(x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(2 x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (16l) O II
$\mathbf{B_{12}}$ = $\left(- x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(2 x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (16l) O II
$\mathbf{B_{13}}$ = $\left(x_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(- x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (16l) O II
$\mathbf{B_{14}}$ = $- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (16l) O II
$\mathbf{B_{15}}$ = $\left(x_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (16l) O II
$\mathbf{B_{16}}$ = $- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (16l) O II
$\mathbf{B_{17}}$ = $\left(x_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(2 x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (16l) O II
$\mathbf{B_{18}}$ = $- \left(x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(2 x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (16l) O II

References

  • J. A. Kaduk, W. Wong-Ng, W. Greenwood, J. Dillingham, and B. H. Troy, Crystal Structures and Reference PowderPatterns of BaR$_{2}$ZnO$_{5}$ (R = La, Nd, Sm,Eu, Gd, Dy, Ho, Y, Er, and Tm), J. Res. NIST 104, 147–171 (1999), doi:10.6028/jres.104.011.

Prototype Generator

aflow --proto=AB2C5D_tI36_140_a_h_cl_b --params=$a,c/a,x_{4},x_{5},z_{5}$

Species:

Running:

Output: