Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2C4D_tP16_125_a_cd_m_b-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/DV64
or https://aflow.org/p/AB2C4D_tP16_125_a_cd_m_b-001
or PDF Version

SrFe$_{2}$S$_{4}$ Structure: AB2C4D_tP16_125_a_cd_m_b-001

Picture of Structure; Click for Big Picture
Prototype Fe$_{2}$S$_{4}$Sr
AFLOW prototype label AB2C4D_tP16_125_a_cd_m_b-001
ICSD 41720, 71096
Pearson symbol tP16
Space group number 125
Space group symbol $P4/nbm$
AFLOW prototype command aflow --proto=AB2C4D_tP16_125_a_cd_m_b-001
--params=$a, \allowbreak c/a, \allowbreak x_{5}, \allowbreak z_{5}$

  • (Boller, 1978) (ICSD 41720) place this structure in space group $P\overline{4}b2$ #117. If we accept the coordinates of the sulfur atoms as correct, then $x_{S} = y_{S}$ and and the structure is actually in space group $P4/nbm$ #125, as shown by (Cenzual, 1991) (ICSD 71096). We show this configuration here.
  • The (2a) strontium site is 75% filled, while the (2b) site is 25% filled. If both sites are equally filled this system is in the SiU$_{3}$ ($D0_{c}$) structure with space group $I4/mcm$ #140.
  • We highlight the difference in the strontium sites by replacing the second strontium atom by calcium. This changes the AFLOW label of the system.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (2a) Ca I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}$ (2a) Ca I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2b) Sr I
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2b) Sr I
$\mathbf{B_{5}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (2c) Fe I
$\mathbf{B_{6}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}$ (2c) Fe I
$\mathbf{B_{7}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2d) Fe II
$\mathbf{B_{8}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2d) Fe II
$\mathbf{B_{9}}$ = $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8m) S I
$\mathbf{B_{10}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8m) S I
$\mathbf{B_{11}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8m) S I
$\mathbf{B_{12}}$ = $- x_{5} \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8m) S I
$\mathbf{B_{13}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (8m) S I
$\mathbf{B_{14}}$ = $x_{5} \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (8m) S I
$\mathbf{B_{15}}$ = $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (8m) S I
$\mathbf{B_{16}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (8m) S I

References

  • H. Boller, Faserförmige Erdalkali-thioferrate, Monatsh. Chem. 109, 975–985 (1978), doi:10.1007/BF00907319.

Found in

  • K. Cenzual, L. M. Gelato, M. Penzo, and E. Parthé, Inorganic structure types with revised space groups. I, Acta Crystallogr. Sect. B 47, 433–439 (1991), doi:10.1107/S0108768191000903.

Prototype Generator

aflow --proto=AB2C4D_tP16_125_a_cd_m_b --params=$a,c/a,x_{5},z_{5}$

Species:

Running:

Output: