AFLOW Prototype: A8B23_mP124_7_16a_46a-001
This structure originally had the label A8B23_mP124_7_16a_46a. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/5T76
or
https://aflow.org/p/A8B23_mP124_7_16a_46a-001
or
PDF Version
Prototype | Mo$_{8}$O$_{23}$ |
AFLOW prototype label | A8B23_mP124_7_16a_46a-001 |
ICSD | 202203 |
Pearson symbol | mP124 |
Space group number | 7 |
Space group symbol | $Pc$ |
AFLOW prototype command |
aflow --proto=A8B23_mP124_7_16a_46a-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak y_{16}, \allowbreak z_{16}, \allowbreak x_{17}, \allowbreak y_{17}, \allowbreak z_{17}, \allowbreak x_{18}, \allowbreak y_{18}, \allowbreak z_{18}, \allowbreak x_{19}, \allowbreak y_{19}, \allowbreak z_{19}, \allowbreak x_{20}, \allowbreak y_{20}, \allowbreak z_{20}, \allowbreak x_{21}, \allowbreak y_{21}, \allowbreak z_{21}, \allowbreak x_{22}, \allowbreak y_{22}, \allowbreak z_{22}, \allowbreak x_{23}, \allowbreak y_{23}, \allowbreak z_{23}, \allowbreak x_{24}, \allowbreak y_{24}, \allowbreak z_{24}, \allowbreak x_{25}, \allowbreak y_{25}, \allowbreak z_{25}, \allowbreak x_{26}, \allowbreak y_{26}, \allowbreak z_{26}, \allowbreak x_{27}, \allowbreak y_{27}, \allowbreak z_{27}, \allowbreak x_{28}, \allowbreak y_{28}, \allowbreak z_{28}, \allowbreak x_{29}, \allowbreak y_{29}, \allowbreak z_{29}, \allowbreak x_{30}, \allowbreak y_{30}, \allowbreak z_{30}, \allowbreak x_{31}, \allowbreak y_{31}, \allowbreak z_{31}, \allowbreak x_{32}, \allowbreak y_{32}, \allowbreak z_{32}, \allowbreak x_{33}, \allowbreak y_{33}, \allowbreak z_{33}, \allowbreak x_{34}, \allowbreak y_{34}, \allowbreak z_{34}, \allowbreak x_{35}, \allowbreak y_{35}, \allowbreak z_{35}, \allowbreak x_{36}, \allowbreak y_{36}, \allowbreak z_{36}, \allowbreak x_{37}, \allowbreak y_{37}, \allowbreak z_{37}, \allowbreak x_{38}, \allowbreak y_{38}, \allowbreak z_{38}, \allowbreak x_{39}, \allowbreak y_{39}, \allowbreak z_{39}, \allowbreak x_{40}, \allowbreak y_{40}, \allowbreak z_{40}, \allowbreak x_{41}, \allowbreak y_{41}, \allowbreak z_{41}, \allowbreak x_{42}, \allowbreak y_{42}, \allowbreak z_{42}, \allowbreak x_{43}, \allowbreak y_{43}, \allowbreak z_{43}, \allowbreak x_{44}, \allowbreak y_{44}, \allowbreak z_{44}, \allowbreak x_{45}, \allowbreak y_{45}, \allowbreak z_{45}, \allowbreak x_{46}, \allowbreak y_{46}, \allowbreak z_{46}, \allowbreak x_{47}, \allowbreak y_{47}, \allowbreak z_{47}, \allowbreak x_{48}, \allowbreak y_{48}, \allowbreak z_{48}, \allowbreak x_{49}, \allowbreak y_{49}, \allowbreak z_{49}, \allowbreak x_{50}, \allowbreak y_{50}, \allowbreak z_{50}, \allowbreak x_{51}, \allowbreak y_{51}, \allowbreak z_{51}, \allowbreak x_{52}, \allowbreak y_{52}, \allowbreak z_{52}, \allowbreak x_{53}, \allowbreak y_{53}, \allowbreak z_{53}, \allowbreak x_{54}, \allowbreak y_{54}, \allowbreak z_{54}, \allowbreak x_{55}, \allowbreak y_{55}, \allowbreak z_{55}, \allowbreak x_{56}, \allowbreak y_{56}, \allowbreak z_{56}, \allowbreak x_{57}, \allowbreak y_{57}, \allowbreak z_{57}, \allowbreak x_{58}, \allowbreak y_{58}, \allowbreak z_{58}, \allowbreak x_{59}, \allowbreak y_{59}, \allowbreak z_{59}, \allowbreak x_{60}, \allowbreak y_{60}, \allowbreak z_{60}, \allowbreak x_{61}, \allowbreak y_{61}, \allowbreak z_{61}, \allowbreak x_{62}, \allowbreak y_{62}, \allowbreak z_{62}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ | = | $\left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{1} \,\mathbf{\hat{y}}+c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo I |
$\mathbf{B_{2}}$ | = | $x_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{1} + c \left(z_{1} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{1} \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo I |
$\mathbf{B_{3}}$ | = | $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo II |
$\mathbf{B_{4}}$ | = | $x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{2} + c \left(z_{2} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo II |
$\mathbf{B_{5}}$ | = | $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo III |
$\mathbf{B_{6}}$ | = | $x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{3} + c \left(z_{3} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo III |
$\mathbf{B_{7}}$ | = | $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo IV |
$\mathbf{B_{8}}$ | = | $x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{4} + c \left(z_{4} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo IV |
$\mathbf{B_{9}}$ | = | $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo V |
$\mathbf{B_{10}}$ | = | $x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{5} + c \left(z_{5} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo V |
$\mathbf{B_{11}}$ | = | $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo VI |
$\mathbf{B_{12}}$ | = | $x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{6} + c \left(z_{6} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo VI |
$\mathbf{B_{13}}$ | = | $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo VII |
$\mathbf{B_{14}}$ | = | $x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{7} + c \left(z_{7} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo VII |
$\mathbf{B_{15}}$ | = | $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo VIII |
$\mathbf{B_{16}}$ | = | $x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{8} + c \left(z_{8} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo VIII |
$\mathbf{B_{17}}$ | = | $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $\left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo IX |
$\mathbf{B_{18}}$ | = | $x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{9} + c \left(z_{9} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo IX |
$\mathbf{B_{19}}$ | = | $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $\left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo X |
$\mathbf{B_{20}}$ | = | $x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{10} + c \left(z_{10} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo X |
$\mathbf{B_{21}}$ | = | $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $\left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}+c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo XI |
$\mathbf{B_{22}}$ | = | $x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{11} + c \left(z_{11} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo XI |
$\mathbf{B_{23}}$ | = | $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ | = | $\left(a x_{12} + c z_{12} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{12} \,\mathbf{\hat{y}}+c z_{12} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo XII |
$\mathbf{B_{24}}$ | = | $x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{12} + c \left(z_{12} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo XII |
$\mathbf{B_{25}}$ | = | $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ | = | $\left(a x_{13} + c z_{13} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{13} \,\mathbf{\hat{y}}+c z_{13} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo XIII |
$\mathbf{B_{26}}$ | = | $x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{13} + c \left(z_{13} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo XIII |
$\mathbf{B_{27}}$ | = | $x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ | = | $\left(a x_{14} + c z_{14} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{14} \,\mathbf{\hat{y}}+c z_{14} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo XIV |
$\mathbf{B_{28}}$ | = | $x_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{14} + c \left(z_{14} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo XIV |
$\mathbf{B_{29}}$ | = | $x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ | = | $\left(a x_{15} + c z_{15} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{15} \,\mathbf{\hat{y}}+c z_{15} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo XV |
$\mathbf{B_{30}}$ | = | $x_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{15} + c \left(z_{15} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo XV |
$\mathbf{B_{31}}$ | = | $x_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ | = | $\left(a x_{16} + c z_{16} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{16} \,\mathbf{\hat{y}}+c z_{16} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo XVI |
$\mathbf{B_{32}}$ | = | $x_{16} \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{16} + c \left(z_{16} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{16} \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Mo XVI |
$\mathbf{B_{33}}$ | = | $x_{17} \, \mathbf{a}_{1}+y_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ | = | $\left(a x_{17} + c z_{17} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{17} \,\mathbf{\hat{y}}+c z_{17} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O I |
$\mathbf{B_{34}}$ | = | $x_{17} \, \mathbf{a}_{1}- y_{17} \, \mathbf{a}_{2}+\left(z_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{17} + c \left(z_{17} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{17} \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O I |
$\mathbf{B_{35}}$ | = | $x_{18} \, \mathbf{a}_{1}+y_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ | = | $\left(a x_{18} + c z_{18} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{18} \,\mathbf{\hat{y}}+c z_{18} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O II |
$\mathbf{B_{36}}$ | = | $x_{18} \, \mathbf{a}_{1}- y_{18} \, \mathbf{a}_{2}+\left(z_{18} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{18} + c \left(z_{18} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{18} \,\mathbf{\hat{y}}+c \left(z_{18} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O II |
$\mathbf{B_{37}}$ | = | $x_{19} \, \mathbf{a}_{1}+y_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ | = | $\left(a x_{19} + c z_{19} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{19} \,\mathbf{\hat{y}}+c z_{19} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O III |
$\mathbf{B_{38}}$ | = | $x_{19} \, \mathbf{a}_{1}- y_{19} \, \mathbf{a}_{2}+\left(z_{19} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{19} + c \left(z_{19} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{19} \,\mathbf{\hat{y}}+c \left(z_{19} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O III |
$\mathbf{B_{39}}$ | = | $x_{20} \, \mathbf{a}_{1}+y_{20} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ | = | $\left(a x_{20} + c z_{20} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{20} \,\mathbf{\hat{y}}+c z_{20} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O IV |
$\mathbf{B_{40}}$ | = | $x_{20} \, \mathbf{a}_{1}- y_{20} \, \mathbf{a}_{2}+\left(z_{20} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{20} + c \left(z_{20} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{20} \,\mathbf{\hat{y}}+c \left(z_{20} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O IV |
$\mathbf{B_{41}}$ | = | $x_{21} \, \mathbf{a}_{1}+y_{21} \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ | = | $\left(a x_{21} + c z_{21} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{21} \,\mathbf{\hat{y}}+c z_{21} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O V |
$\mathbf{B_{42}}$ | = | $x_{21} \, \mathbf{a}_{1}- y_{21} \, \mathbf{a}_{2}+\left(z_{21} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{21} + c \left(z_{21} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{21} \,\mathbf{\hat{y}}+c \left(z_{21} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O V |
$\mathbf{B_{43}}$ | = | $x_{22} \, \mathbf{a}_{1}+y_{22} \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ | = | $\left(a x_{22} + c z_{22} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{22} \,\mathbf{\hat{y}}+c z_{22} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O VI |
$\mathbf{B_{44}}$ | = | $x_{22} \, \mathbf{a}_{1}- y_{22} \, \mathbf{a}_{2}+\left(z_{22} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{22} + c \left(z_{22} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{22} \,\mathbf{\hat{y}}+c \left(z_{22} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O VI |
$\mathbf{B_{45}}$ | = | $x_{23} \, \mathbf{a}_{1}+y_{23} \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ | = | $\left(a x_{23} + c z_{23} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{23} \,\mathbf{\hat{y}}+c z_{23} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O VII |
$\mathbf{B_{46}}$ | = | $x_{23} \, \mathbf{a}_{1}- y_{23} \, \mathbf{a}_{2}+\left(z_{23} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{23} + c \left(z_{23} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{23} \,\mathbf{\hat{y}}+c \left(z_{23} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O VII |
$\mathbf{B_{47}}$ | = | $x_{24} \, \mathbf{a}_{1}+y_{24} \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ | = | $\left(a x_{24} + c z_{24} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{24} \,\mathbf{\hat{y}}+c z_{24} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O VIII |
$\mathbf{B_{48}}$ | = | $x_{24} \, \mathbf{a}_{1}- y_{24} \, \mathbf{a}_{2}+\left(z_{24} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{24} + c \left(z_{24} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{24} \,\mathbf{\hat{y}}+c \left(z_{24} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O VIII |
$\mathbf{B_{49}}$ | = | $x_{25} \, \mathbf{a}_{1}+y_{25} \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ | = | $\left(a x_{25} + c z_{25} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{25} \,\mathbf{\hat{y}}+c z_{25} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O IX |
$\mathbf{B_{50}}$ | = | $x_{25} \, \mathbf{a}_{1}- y_{25} \, \mathbf{a}_{2}+\left(z_{25} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{25} + c \left(z_{25} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{25} \,\mathbf{\hat{y}}+c \left(z_{25} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O IX |
$\mathbf{B_{51}}$ | = | $x_{26} \, \mathbf{a}_{1}+y_{26} \, \mathbf{a}_{2}+z_{26} \, \mathbf{a}_{3}$ | = | $\left(a x_{26} + c z_{26} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{26} \,\mathbf{\hat{y}}+c z_{26} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O X |
$\mathbf{B_{52}}$ | = | $x_{26} \, \mathbf{a}_{1}- y_{26} \, \mathbf{a}_{2}+\left(z_{26} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{26} + c \left(z_{26} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{26} \,\mathbf{\hat{y}}+c \left(z_{26} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O X |
$\mathbf{B_{53}}$ | = | $x_{27} \, \mathbf{a}_{1}+y_{27} \, \mathbf{a}_{2}+z_{27} \, \mathbf{a}_{3}$ | = | $\left(a x_{27} + c z_{27} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{27} \,\mathbf{\hat{y}}+c z_{27} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XI |
$\mathbf{B_{54}}$ | = | $x_{27} \, \mathbf{a}_{1}- y_{27} \, \mathbf{a}_{2}+\left(z_{27} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{27} + c \left(z_{27} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{27} \,\mathbf{\hat{y}}+c \left(z_{27} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XI |
$\mathbf{B_{55}}$ | = | $x_{28} \, \mathbf{a}_{1}+y_{28} \, \mathbf{a}_{2}+z_{28} \, \mathbf{a}_{3}$ | = | $\left(a x_{28} + c z_{28} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{28} \,\mathbf{\hat{y}}+c z_{28} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XII |
$\mathbf{B_{56}}$ | = | $x_{28} \, \mathbf{a}_{1}- y_{28} \, \mathbf{a}_{2}+\left(z_{28} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{28} + c \left(z_{28} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{28} \,\mathbf{\hat{y}}+c \left(z_{28} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XII |
$\mathbf{B_{57}}$ | = | $x_{29} \, \mathbf{a}_{1}+y_{29} \, \mathbf{a}_{2}+z_{29} \, \mathbf{a}_{3}$ | = | $\left(a x_{29} + c z_{29} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{29} \,\mathbf{\hat{y}}+c z_{29} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XIII |
$\mathbf{B_{58}}$ | = | $x_{29} \, \mathbf{a}_{1}- y_{29} \, \mathbf{a}_{2}+\left(z_{29} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{29} + c \left(z_{29} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{29} \,\mathbf{\hat{y}}+c \left(z_{29} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XIII |
$\mathbf{B_{59}}$ | = | $x_{30} \, \mathbf{a}_{1}+y_{30} \, \mathbf{a}_{2}+z_{30} \, \mathbf{a}_{3}$ | = | $\left(a x_{30} + c z_{30} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{30} \,\mathbf{\hat{y}}+c z_{30} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XIV |
$\mathbf{B_{60}}$ | = | $x_{30} \, \mathbf{a}_{1}- y_{30} \, \mathbf{a}_{2}+\left(z_{30} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{30} + c \left(z_{30} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{30} \,\mathbf{\hat{y}}+c \left(z_{30} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XIV |
$\mathbf{B_{61}}$ | = | $x_{31} \, \mathbf{a}_{1}+y_{31} \, \mathbf{a}_{2}+z_{31} \, \mathbf{a}_{3}$ | = | $\left(a x_{31} + c z_{31} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{31} \,\mathbf{\hat{y}}+c z_{31} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XV |
$\mathbf{B_{62}}$ | = | $x_{31} \, \mathbf{a}_{1}- y_{31} \, \mathbf{a}_{2}+\left(z_{31} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{31} + c \left(z_{31} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{31} \,\mathbf{\hat{y}}+c \left(z_{31} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XV |
$\mathbf{B_{63}}$ | = | $x_{32} \, \mathbf{a}_{1}+y_{32} \, \mathbf{a}_{2}+z_{32} \, \mathbf{a}_{3}$ | = | $\left(a x_{32} + c z_{32} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{32} \,\mathbf{\hat{y}}+c z_{32} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XVI |
$\mathbf{B_{64}}$ | = | $x_{32} \, \mathbf{a}_{1}- y_{32} \, \mathbf{a}_{2}+\left(z_{32} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{32} + c \left(z_{32} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{32} \,\mathbf{\hat{y}}+c \left(z_{32} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XVI |
$\mathbf{B_{65}}$ | = | $x_{33} \, \mathbf{a}_{1}+y_{33} \, \mathbf{a}_{2}+z_{33} \, \mathbf{a}_{3}$ | = | $\left(a x_{33} + c z_{33} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{33} \,\mathbf{\hat{y}}+c z_{33} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XVII |
$\mathbf{B_{66}}$ | = | $x_{33} \, \mathbf{a}_{1}- y_{33} \, \mathbf{a}_{2}+\left(z_{33} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{33} + c \left(z_{33} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{33} \,\mathbf{\hat{y}}+c \left(z_{33} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XVII |
$\mathbf{B_{67}}$ | = | $x_{34} \, \mathbf{a}_{1}+y_{34} \, \mathbf{a}_{2}+z_{34} \, \mathbf{a}_{3}$ | = | $\left(a x_{34} + c z_{34} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{34} \,\mathbf{\hat{y}}+c z_{34} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XVIII |
$\mathbf{B_{68}}$ | = | $x_{34} \, \mathbf{a}_{1}- y_{34} \, \mathbf{a}_{2}+\left(z_{34} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{34} + c \left(z_{34} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{34} \,\mathbf{\hat{y}}+c \left(z_{34} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XVIII |
$\mathbf{B_{69}}$ | = | $x_{35} \, \mathbf{a}_{1}+y_{35} \, \mathbf{a}_{2}+z_{35} \, \mathbf{a}_{3}$ | = | $\left(a x_{35} + c z_{35} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{35} \,\mathbf{\hat{y}}+c z_{35} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XIX |
$\mathbf{B_{70}}$ | = | $x_{35} \, \mathbf{a}_{1}- y_{35} \, \mathbf{a}_{2}+\left(z_{35} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{35} + c \left(z_{35} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{35} \,\mathbf{\hat{y}}+c \left(z_{35} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XIX |
$\mathbf{B_{71}}$ | = | $x_{36} \, \mathbf{a}_{1}+y_{36} \, \mathbf{a}_{2}+z_{36} \, \mathbf{a}_{3}$ | = | $\left(a x_{36} + c z_{36} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{36} \,\mathbf{\hat{y}}+c z_{36} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XX |
$\mathbf{B_{72}}$ | = | $x_{36} \, \mathbf{a}_{1}- y_{36} \, \mathbf{a}_{2}+\left(z_{36} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{36} + c \left(z_{36} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{36} \,\mathbf{\hat{y}}+c \left(z_{36} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XX |
$\mathbf{B_{73}}$ | = | $x_{37} \, \mathbf{a}_{1}+y_{37} \, \mathbf{a}_{2}+z_{37} \, \mathbf{a}_{3}$ | = | $\left(a x_{37} + c z_{37} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{37} \,\mathbf{\hat{y}}+c z_{37} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXI |
$\mathbf{B_{74}}$ | = | $x_{37} \, \mathbf{a}_{1}- y_{37} \, \mathbf{a}_{2}+\left(z_{37} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{37} + c \left(z_{37} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{37} \,\mathbf{\hat{y}}+c \left(z_{37} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXI |
$\mathbf{B_{75}}$ | = | $x_{38} \, \mathbf{a}_{1}+y_{38} \, \mathbf{a}_{2}+z_{38} \, \mathbf{a}_{3}$ | = | $\left(a x_{38} + c z_{38} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{38} \,\mathbf{\hat{y}}+c z_{38} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXII |
$\mathbf{B_{76}}$ | = | $x_{38} \, \mathbf{a}_{1}- y_{38} \, \mathbf{a}_{2}+\left(z_{38} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{38} + c \left(z_{38} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{38} \,\mathbf{\hat{y}}+c \left(z_{38} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXII |
$\mathbf{B_{77}}$ | = | $x_{39} \, \mathbf{a}_{1}+y_{39} \, \mathbf{a}_{2}+z_{39} \, \mathbf{a}_{3}$ | = | $\left(a x_{39} + c z_{39} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{39} \,\mathbf{\hat{y}}+c z_{39} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXIII |
$\mathbf{B_{78}}$ | = | $x_{39} \, \mathbf{a}_{1}- y_{39} \, \mathbf{a}_{2}+\left(z_{39} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{39} + c \left(z_{39} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{39} \,\mathbf{\hat{y}}+c \left(z_{39} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXIII |
$\mathbf{B_{79}}$ | = | $x_{40} \, \mathbf{a}_{1}+y_{40} \, \mathbf{a}_{2}+z_{40} \, \mathbf{a}_{3}$ | = | $\left(a x_{40} + c z_{40} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{40} \,\mathbf{\hat{y}}+c z_{40} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXIV |
$\mathbf{B_{80}}$ | = | $x_{40} \, \mathbf{a}_{1}- y_{40} \, \mathbf{a}_{2}+\left(z_{40} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{40} + c \left(z_{40} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{40} \,\mathbf{\hat{y}}+c \left(z_{40} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXIV |
$\mathbf{B_{81}}$ | = | $x_{41} \, \mathbf{a}_{1}+y_{41} \, \mathbf{a}_{2}+z_{41} \, \mathbf{a}_{3}$ | = | $\left(a x_{41} + c z_{41} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{41} \,\mathbf{\hat{y}}+c z_{41} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXV |
$\mathbf{B_{82}}$ | = | $x_{41} \, \mathbf{a}_{1}- y_{41} \, \mathbf{a}_{2}+\left(z_{41} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{41} + c \left(z_{41} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{41} \,\mathbf{\hat{y}}+c \left(z_{41} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXV |
$\mathbf{B_{83}}$ | = | $x_{42} \, \mathbf{a}_{1}+y_{42} \, \mathbf{a}_{2}+z_{42} \, \mathbf{a}_{3}$ | = | $\left(a x_{42} + c z_{42} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{42} \,\mathbf{\hat{y}}+c z_{42} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXVI |
$\mathbf{B_{84}}$ | = | $x_{42} \, \mathbf{a}_{1}- y_{42} \, \mathbf{a}_{2}+\left(z_{42} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{42} + c \left(z_{42} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{42} \,\mathbf{\hat{y}}+c \left(z_{42} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXVI |
$\mathbf{B_{85}}$ | = | $x_{43} \, \mathbf{a}_{1}+y_{43} \, \mathbf{a}_{2}+z_{43} \, \mathbf{a}_{3}$ | = | $\left(a x_{43} + c z_{43} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{43} \,\mathbf{\hat{y}}+c z_{43} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXVII |
$\mathbf{B_{86}}$ | = | $x_{43} \, \mathbf{a}_{1}- y_{43} \, \mathbf{a}_{2}+\left(z_{43} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{43} + c \left(z_{43} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{43} \,\mathbf{\hat{y}}+c \left(z_{43} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXVII |
$\mathbf{B_{87}}$ | = | $x_{44} \, \mathbf{a}_{1}+y_{44} \, \mathbf{a}_{2}+z_{44} \, \mathbf{a}_{3}$ | = | $\left(a x_{44} + c z_{44} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{44} \,\mathbf{\hat{y}}+c z_{44} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXVIII |
$\mathbf{B_{88}}$ | = | $x_{44} \, \mathbf{a}_{1}- y_{44} \, \mathbf{a}_{2}+\left(z_{44} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{44} + c \left(z_{44} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{44} \,\mathbf{\hat{y}}+c \left(z_{44} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXVIII |
$\mathbf{B_{89}}$ | = | $x_{45} \, \mathbf{a}_{1}+y_{45} \, \mathbf{a}_{2}+z_{45} \, \mathbf{a}_{3}$ | = | $\left(a x_{45} + c z_{45} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{45} \,\mathbf{\hat{y}}+c z_{45} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXIX |
$\mathbf{B_{90}}$ | = | $x_{45} \, \mathbf{a}_{1}- y_{45} \, \mathbf{a}_{2}+\left(z_{45} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{45} + c \left(z_{45} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{45} \,\mathbf{\hat{y}}+c \left(z_{45} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXIX |
$\mathbf{B_{91}}$ | = | $x_{46} \, \mathbf{a}_{1}+y_{46} \, \mathbf{a}_{2}+z_{46} \, \mathbf{a}_{3}$ | = | $\left(a x_{46} + c z_{46} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{46} \,\mathbf{\hat{y}}+c z_{46} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXX |
$\mathbf{B_{92}}$ | = | $x_{46} \, \mathbf{a}_{1}- y_{46} \, \mathbf{a}_{2}+\left(z_{46} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{46} + c \left(z_{46} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{46} \,\mathbf{\hat{y}}+c \left(z_{46} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXX |
$\mathbf{B_{93}}$ | = | $x_{47} \, \mathbf{a}_{1}+y_{47} \, \mathbf{a}_{2}+z_{47} \, \mathbf{a}_{3}$ | = | $\left(a x_{47} + c z_{47} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{47} \,\mathbf{\hat{y}}+c z_{47} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXXI |
$\mathbf{B_{94}}$ | = | $x_{47} \, \mathbf{a}_{1}- y_{47} \, \mathbf{a}_{2}+\left(z_{47} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{47} + c \left(z_{47} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{47} \,\mathbf{\hat{y}}+c \left(z_{47} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXXI |
$\mathbf{B_{95}}$ | = | $x_{48} \, \mathbf{a}_{1}+y_{48} \, \mathbf{a}_{2}+z_{48} \, \mathbf{a}_{3}$ | = | $\left(a x_{48} + c z_{48} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{48} \,\mathbf{\hat{y}}+c z_{48} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXXII |
$\mathbf{B_{96}}$ | = | $x_{48} \, \mathbf{a}_{1}- y_{48} \, \mathbf{a}_{2}+\left(z_{48} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{48} + c \left(z_{48} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{48} \,\mathbf{\hat{y}}+c \left(z_{48} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXXII |
$\mathbf{B_{97}}$ | = | $x_{49} \, \mathbf{a}_{1}+y_{49} \, \mathbf{a}_{2}+z_{49} \, \mathbf{a}_{3}$ | = | $\left(a x_{49} + c z_{49} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{49} \,\mathbf{\hat{y}}+c z_{49} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXXIII |
$\mathbf{B_{98}}$ | = | $x_{49} \, \mathbf{a}_{1}- y_{49} \, \mathbf{a}_{2}+\left(z_{49} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{49} + c \left(z_{49} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{49} \,\mathbf{\hat{y}}+c \left(z_{49} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXXIII |
$\mathbf{B_{99}}$ | = | $x_{50} \, \mathbf{a}_{1}+y_{50} \, \mathbf{a}_{2}+z_{50} \, \mathbf{a}_{3}$ | = | $\left(a x_{50} + c z_{50} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{50} \,\mathbf{\hat{y}}+c z_{50} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXXIV |
$\mathbf{B_{100}}$ | = | $x_{50} \, \mathbf{a}_{1}- y_{50} \, \mathbf{a}_{2}+\left(z_{50} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{50} + c \left(z_{50} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{50} \,\mathbf{\hat{y}}+c \left(z_{50} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXXIV |
$\mathbf{B_{101}}$ | = | $x_{51} \, \mathbf{a}_{1}+y_{51} \, \mathbf{a}_{2}+z_{51} \, \mathbf{a}_{3}$ | = | $\left(a x_{51} + c z_{51} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{51} \,\mathbf{\hat{y}}+c z_{51} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXXV |
$\mathbf{B_{102}}$ | = | $x_{51} \, \mathbf{a}_{1}- y_{51} \, \mathbf{a}_{2}+\left(z_{51} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{51} + c \left(z_{51} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{51} \,\mathbf{\hat{y}}+c \left(z_{51} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXXV |
$\mathbf{B_{103}}$ | = | $x_{52} \, \mathbf{a}_{1}+y_{52} \, \mathbf{a}_{2}+z_{52} \, \mathbf{a}_{3}$ | = | $\left(a x_{52} + c z_{52} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{52} \,\mathbf{\hat{y}}+c z_{52} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXXVI |
$\mathbf{B_{104}}$ | = | $x_{52} \, \mathbf{a}_{1}- y_{52} \, \mathbf{a}_{2}+\left(z_{52} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{52} + c \left(z_{52} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{52} \,\mathbf{\hat{y}}+c \left(z_{52} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXXVI |
$\mathbf{B_{105}}$ | = | $x_{53} \, \mathbf{a}_{1}+y_{53} \, \mathbf{a}_{2}+z_{53} \, \mathbf{a}_{3}$ | = | $\left(a x_{53} + c z_{53} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{53} \,\mathbf{\hat{y}}+c z_{53} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXXVII |
$\mathbf{B_{106}}$ | = | $x_{53} \, \mathbf{a}_{1}- y_{53} \, \mathbf{a}_{2}+\left(z_{53} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{53} + c \left(z_{53} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{53} \,\mathbf{\hat{y}}+c \left(z_{53} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXXVII |
$\mathbf{B_{107}}$ | = | $x_{54} \, \mathbf{a}_{1}+y_{54} \, \mathbf{a}_{2}+z_{54} \, \mathbf{a}_{3}$ | = | $\left(a x_{54} + c z_{54} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{54} \,\mathbf{\hat{y}}+c z_{54} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXXVIII |
$\mathbf{B_{108}}$ | = | $x_{54} \, \mathbf{a}_{1}- y_{54} \, \mathbf{a}_{2}+\left(z_{54} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{54} + c \left(z_{54} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{54} \,\mathbf{\hat{y}}+c \left(z_{54} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXXVIII |
$\mathbf{B_{109}}$ | = | $x_{55} \, \mathbf{a}_{1}+y_{55} \, \mathbf{a}_{2}+z_{55} \, \mathbf{a}_{3}$ | = | $\left(a x_{55} + c z_{55} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{55} \,\mathbf{\hat{y}}+c z_{55} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXXIX |
$\mathbf{B_{110}}$ | = | $x_{55} \, \mathbf{a}_{1}- y_{55} \, \mathbf{a}_{2}+\left(z_{55} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{55} + c \left(z_{55} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{55} \,\mathbf{\hat{y}}+c \left(z_{55} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXXIX |
$\mathbf{B_{111}}$ | = | $x_{56} \, \mathbf{a}_{1}+y_{56} \, \mathbf{a}_{2}+z_{56} \, \mathbf{a}_{3}$ | = | $\left(a x_{56} + c z_{56} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{56} \,\mathbf{\hat{y}}+c z_{56} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XL |
$\mathbf{B_{112}}$ | = | $x_{56} \, \mathbf{a}_{1}- y_{56} \, \mathbf{a}_{2}+\left(z_{56} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{56} + c \left(z_{56} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{56} \,\mathbf{\hat{y}}+c \left(z_{56} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XL |
$\mathbf{B_{113}}$ | = | $x_{57} \, \mathbf{a}_{1}+y_{57} \, \mathbf{a}_{2}+z_{57} \, \mathbf{a}_{3}$ | = | $\left(a x_{57} + c z_{57} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{57} \,\mathbf{\hat{y}}+c z_{57} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XLI |
$\mathbf{B_{114}}$ | = | $x_{57} \, \mathbf{a}_{1}- y_{57} \, \mathbf{a}_{2}+\left(z_{57} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{57} + c \left(z_{57} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{57} \,\mathbf{\hat{y}}+c \left(z_{57} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XLI |
$\mathbf{B_{115}}$ | = | $x_{58} \, \mathbf{a}_{1}+y_{58} \, \mathbf{a}_{2}+z_{58} \, \mathbf{a}_{3}$ | = | $\left(a x_{58} + c z_{58} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{58} \,\mathbf{\hat{y}}+c z_{58} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XLII |
$\mathbf{B_{116}}$ | = | $x_{58} \, \mathbf{a}_{1}- y_{58} \, \mathbf{a}_{2}+\left(z_{58} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{58} + c \left(z_{58} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{58} \,\mathbf{\hat{y}}+c \left(z_{58} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XLII |
$\mathbf{B_{117}}$ | = | $x_{59} \, \mathbf{a}_{1}+y_{59} \, \mathbf{a}_{2}+z_{59} \, \mathbf{a}_{3}$ | = | $\left(a x_{59} + c z_{59} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{59} \,\mathbf{\hat{y}}+c z_{59} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XLIII |
$\mathbf{B_{118}}$ | = | $x_{59} \, \mathbf{a}_{1}- y_{59} \, \mathbf{a}_{2}+\left(z_{59} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{59} + c \left(z_{59} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{59} \,\mathbf{\hat{y}}+c \left(z_{59} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XLIII |
$\mathbf{B_{119}}$ | = | $x_{60} \, \mathbf{a}_{1}+y_{60} \, \mathbf{a}_{2}+z_{60} \, \mathbf{a}_{3}$ | = | $\left(a x_{60} + c z_{60} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{60} \,\mathbf{\hat{y}}+c z_{60} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XLIV |
$\mathbf{B_{120}}$ | = | $x_{60} \, \mathbf{a}_{1}- y_{60} \, \mathbf{a}_{2}+\left(z_{60} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{60} + c \left(z_{60} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{60} \,\mathbf{\hat{y}}+c \left(z_{60} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XLIV |
$\mathbf{B_{121}}$ | = | $x_{61} \, \mathbf{a}_{1}+y_{61} \, \mathbf{a}_{2}+z_{61} \, \mathbf{a}_{3}$ | = | $\left(a x_{61} + c z_{61} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{61} \,\mathbf{\hat{y}}+c z_{61} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XLV |
$\mathbf{B_{122}}$ | = | $x_{61} \, \mathbf{a}_{1}- y_{61} \, \mathbf{a}_{2}+\left(z_{61} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{61} + c \left(z_{61} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{61} \,\mathbf{\hat{y}}+c \left(z_{61} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XLV |
$\mathbf{B_{123}}$ | = | $x_{62} \, \mathbf{a}_{1}+y_{62} \, \mathbf{a}_{2}+z_{62} \, \mathbf{a}_{3}$ | = | $\left(a x_{62} + c z_{62} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{62} \,\mathbf{\hat{y}}+c z_{62} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XLVI |
$\mathbf{B_{124}}$ | = | $x_{62} \, \mathbf{a}_{1}- y_{62} \, \mathbf{a}_{2}+\left(z_{62} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{62} + c \left(z_{62} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{62} \,\mathbf{\hat{y}}+c \left(z_{62} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XLVI |