Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A8B23_mP124_7_16a_46a-001

This structure originally had the label A8B23_mP124_7_16a_46a. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/5T76
or https://aflow.org/p/A8B23_mP124_7_16a_46a-001
or PDF Version

Low Temperature Mo$_{8}$O$_{23}$ Structure: A8B23_mP124_7_16a_46a-001

Picture of Structure; Click for Big Picture
Prototype Mo$_{8}$O$_{23}$
AFLOW prototype label A8B23_mP124_7_16a_46a-001
ICSD 202203
Pearson symbol mP124
Space group number 7
Space group symbol $Pc$
AFLOW prototype command aflow --proto=A8B23_mP124_7_16a_46a-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak y_{16}, \allowbreak z_{16}, \allowbreak x_{17}, \allowbreak y_{17}, \allowbreak z_{17}, \allowbreak x_{18}, \allowbreak y_{18}, \allowbreak z_{18}, \allowbreak x_{19}, \allowbreak y_{19}, \allowbreak z_{19}, \allowbreak x_{20}, \allowbreak y_{20}, \allowbreak z_{20}, \allowbreak x_{21}, \allowbreak y_{21}, \allowbreak z_{21}, \allowbreak x_{22}, \allowbreak y_{22}, \allowbreak z_{22}, \allowbreak x_{23}, \allowbreak y_{23}, \allowbreak z_{23}, \allowbreak x_{24}, \allowbreak y_{24}, \allowbreak z_{24}, \allowbreak x_{25}, \allowbreak y_{25}, \allowbreak z_{25}, \allowbreak x_{26}, \allowbreak y_{26}, \allowbreak z_{26}, \allowbreak x_{27}, \allowbreak y_{27}, \allowbreak z_{27}, \allowbreak x_{28}, \allowbreak y_{28}, \allowbreak z_{28}, \allowbreak x_{29}, \allowbreak y_{29}, \allowbreak z_{29}, \allowbreak x_{30}, \allowbreak y_{30}, \allowbreak z_{30}, \allowbreak x_{31}, \allowbreak y_{31}, \allowbreak z_{31}, \allowbreak x_{32}, \allowbreak y_{32}, \allowbreak z_{32}, \allowbreak x_{33}, \allowbreak y_{33}, \allowbreak z_{33}, \allowbreak x_{34}, \allowbreak y_{34}, \allowbreak z_{34}, \allowbreak x_{35}, \allowbreak y_{35}, \allowbreak z_{35}, \allowbreak x_{36}, \allowbreak y_{36}, \allowbreak z_{36}, \allowbreak x_{37}, \allowbreak y_{37}, \allowbreak z_{37}, \allowbreak x_{38}, \allowbreak y_{38}, \allowbreak z_{38}, \allowbreak x_{39}, \allowbreak y_{39}, \allowbreak z_{39}, \allowbreak x_{40}, \allowbreak y_{40}, \allowbreak z_{40}, \allowbreak x_{41}, \allowbreak y_{41}, \allowbreak z_{41}, \allowbreak x_{42}, \allowbreak y_{42}, \allowbreak z_{42}, \allowbreak x_{43}, \allowbreak y_{43}, \allowbreak z_{43}, \allowbreak x_{44}, \allowbreak y_{44}, \allowbreak z_{44}, \allowbreak x_{45}, \allowbreak y_{45}, \allowbreak z_{45}, \allowbreak x_{46}, \allowbreak y_{46}, \allowbreak z_{46}, \allowbreak x_{47}, \allowbreak y_{47}, \allowbreak z_{47}, \allowbreak x_{48}, \allowbreak y_{48}, \allowbreak z_{48}, \allowbreak x_{49}, \allowbreak y_{49}, \allowbreak z_{49}, \allowbreak x_{50}, \allowbreak y_{50}, \allowbreak z_{50}, \allowbreak x_{51}, \allowbreak y_{51}, \allowbreak z_{51}, \allowbreak x_{52}, \allowbreak y_{52}, \allowbreak z_{52}, \allowbreak x_{53}, \allowbreak y_{53}, \allowbreak z_{53}, \allowbreak x_{54}, \allowbreak y_{54}, \allowbreak z_{54}, \allowbreak x_{55}, \allowbreak y_{55}, \allowbreak z_{55}, \allowbreak x_{56}, \allowbreak y_{56}, \allowbreak z_{56}, \allowbreak x_{57}, \allowbreak y_{57}, \allowbreak z_{57}, \allowbreak x_{58}, \allowbreak y_{58}, \allowbreak z_{58}, \allowbreak x_{59}, \allowbreak y_{59}, \allowbreak z_{59}, \allowbreak x_{60}, \allowbreak y_{60}, \allowbreak z_{60}, \allowbreak x_{61}, \allowbreak y_{61}, \allowbreak z_{61}, \allowbreak x_{62}, \allowbreak y_{62}, \allowbreak z_{62}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{1} \,\mathbf{\hat{y}}+c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo I
$\mathbf{B_{2}}$ = $x_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{1} + c \left(z_{1} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{1} \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo II
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{2} + c \left(z_{2} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo II
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo III
$\mathbf{B_{6}}$ = $x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{3} + c \left(z_{3} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo III
$\mathbf{B_{7}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo IV
$\mathbf{B_{8}}$ = $x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{4} + c \left(z_{4} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo IV
$\mathbf{B_{9}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo V
$\mathbf{B_{10}}$ = $x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{5} + c \left(z_{5} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo V
$\mathbf{B_{11}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo VI
$\mathbf{B_{12}}$ = $x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{6} + c \left(z_{6} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo VI
$\mathbf{B_{13}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo VII
$\mathbf{B_{14}}$ = $x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{7} + c \left(z_{7} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo VII
$\mathbf{B_{15}}$ = $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo VIII
$\mathbf{B_{16}}$ = $x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{8} + c \left(z_{8} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo VIII
$\mathbf{B_{17}}$ = $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo IX
$\mathbf{B_{18}}$ = $x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{9} + c \left(z_{9} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo IX
$\mathbf{B_{19}}$ = $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo X
$\mathbf{B_{20}}$ = $x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{10} + c \left(z_{10} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo X
$\mathbf{B_{21}}$ = $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}+c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo XI
$\mathbf{B_{22}}$ = $x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{11} + c \left(z_{11} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo XI
$\mathbf{B_{23}}$ = $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\left(a x_{12} + c z_{12} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{12} \,\mathbf{\hat{y}}+c z_{12} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo XII
$\mathbf{B_{24}}$ = $x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{12} + c \left(z_{12} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo XII
$\mathbf{B_{25}}$ = $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $\left(a x_{13} + c z_{13} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{13} \,\mathbf{\hat{y}}+c z_{13} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo XIII
$\mathbf{B_{26}}$ = $x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{13} + c \left(z_{13} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo XIII
$\mathbf{B_{27}}$ = $x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $\left(a x_{14} + c z_{14} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{14} \,\mathbf{\hat{y}}+c z_{14} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo XIV
$\mathbf{B_{28}}$ = $x_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{14} + c \left(z_{14} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo XIV
$\mathbf{B_{29}}$ = $x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $\left(a x_{15} + c z_{15} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{15} \,\mathbf{\hat{y}}+c z_{15} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo XV
$\mathbf{B_{30}}$ = $x_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{15} + c \left(z_{15} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo XV
$\mathbf{B_{31}}$ = $x_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $\left(a x_{16} + c z_{16} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{16} \,\mathbf{\hat{y}}+c z_{16} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo XVI
$\mathbf{B_{32}}$ = $x_{16} \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{16} + c \left(z_{16} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{16} \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Mo XVI
$\mathbf{B_{33}}$ = $x_{17} \, \mathbf{a}_{1}+y_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $\left(a x_{17} + c z_{17} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{17} \,\mathbf{\hat{y}}+c z_{17} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O I
$\mathbf{B_{34}}$ = $x_{17} \, \mathbf{a}_{1}- y_{17} \, \mathbf{a}_{2}+\left(z_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{17} + c \left(z_{17} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{17} \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O I
$\mathbf{B_{35}}$ = $x_{18} \, \mathbf{a}_{1}+y_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $\left(a x_{18} + c z_{18} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{18} \,\mathbf{\hat{y}}+c z_{18} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O II
$\mathbf{B_{36}}$ = $x_{18} \, \mathbf{a}_{1}- y_{18} \, \mathbf{a}_{2}+\left(z_{18} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{18} + c \left(z_{18} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{18} \,\mathbf{\hat{y}}+c \left(z_{18} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O II
$\mathbf{B_{37}}$ = $x_{19} \, \mathbf{a}_{1}+y_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $\left(a x_{19} + c z_{19} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{19} \,\mathbf{\hat{y}}+c z_{19} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O III
$\mathbf{B_{38}}$ = $x_{19} \, \mathbf{a}_{1}- y_{19} \, \mathbf{a}_{2}+\left(z_{19} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{19} + c \left(z_{19} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{19} \,\mathbf{\hat{y}}+c \left(z_{19} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O III
$\mathbf{B_{39}}$ = $x_{20} \, \mathbf{a}_{1}+y_{20} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $\left(a x_{20} + c z_{20} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{20} \,\mathbf{\hat{y}}+c z_{20} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O IV
$\mathbf{B_{40}}$ = $x_{20} \, \mathbf{a}_{1}- y_{20} \, \mathbf{a}_{2}+\left(z_{20} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{20} + c \left(z_{20} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{20} \,\mathbf{\hat{y}}+c \left(z_{20} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O IV
$\mathbf{B_{41}}$ = $x_{21} \, \mathbf{a}_{1}+y_{21} \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ = $\left(a x_{21} + c z_{21} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{21} \,\mathbf{\hat{y}}+c z_{21} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O V
$\mathbf{B_{42}}$ = $x_{21} \, \mathbf{a}_{1}- y_{21} \, \mathbf{a}_{2}+\left(z_{21} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{21} + c \left(z_{21} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{21} \,\mathbf{\hat{y}}+c \left(z_{21} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O V
$\mathbf{B_{43}}$ = $x_{22} \, \mathbf{a}_{1}+y_{22} \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ = $\left(a x_{22} + c z_{22} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{22} \,\mathbf{\hat{y}}+c z_{22} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O VI
$\mathbf{B_{44}}$ = $x_{22} \, \mathbf{a}_{1}- y_{22} \, \mathbf{a}_{2}+\left(z_{22} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{22} + c \left(z_{22} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{22} \,\mathbf{\hat{y}}+c \left(z_{22} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O VI
$\mathbf{B_{45}}$ = $x_{23} \, \mathbf{a}_{1}+y_{23} \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ = $\left(a x_{23} + c z_{23} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{23} \,\mathbf{\hat{y}}+c z_{23} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O VII
$\mathbf{B_{46}}$ = $x_{23} \, \mathbf{a}_{1}- y_{23} \, \mathbf{a}_{2}+\left(z_{23} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{23} + c \left(z_{23} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{23} \,\mathbf{\hat{y}}+c \left(z_{23} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O VII
$\mathbf{B_{47}}$ = $x_{24} \, \mathbf{a}_{1}+y_{24} \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $\left(a x_{24} + c z_{24} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{24} \,\mathbf{\hat{y}}+c z_{24} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O VIII
$\mathbf{B_{48}}$ = $x_{24} \, \mathbf{a}_{1}- y_{24} \, \mathbf{a}_{2}+\left(z_{24} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{24} + c \left(z_{24} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{24} \,\mathbf{\hat{y}}+c \left(z_{24} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O VIII
$\mathbf{B_{49}}$ = $x_{25} \, \mathbf{a}_{1}+y_{25} \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ = $\left(a x_{25} + c z_{25} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{25} \,\mathbf{\hat{y}}+c z_{25} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O IX
$\mathbf{B_{50}}$ = $x_{25} \, \mathbf{a}_{1}- y_{25} \, \mathbf{a}_{2}+\left(z_{25} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{25} + c \left(z_{25} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{25} \,\mathbf{\hat{y}}+c \left(z_{25} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O IX
$\mathbf{B_{51}}$ = $x_{26} \, \mathbf{a}_{1}+y_{26} \, \mathbf{a}_{2}+z_{26} \, \mathbf{a}_{3}$ = $\left(a x_{26} + c z_{26} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{26} \,\mathbf{\hat{y}}+c z_{26} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O X
$\mathbf{B_{52}}$ = $x_{26} \, \mathbf{a}_{1}- y_{26} \, \mathbf{a}_{2}+\left(z_{26} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{26} + c \left(z_{26} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{26} \,\mathbf{\hat{y}}+c \left(z_{26} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O X
$\mathbf{B_{53}}$ = $x_{27} \, \mathbf{a}_{1}+y_{27} \, \mathbf{a}_{2}+z_{27} \, \mathbf{a}_{3}$ = $\left(a x_{27} + c z_{27} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{27} \,\mathbf{\hat{y}}+c z_{27} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XI
$\mathbf{B_{54}}$ = $x_{27} \, \mathbf{a}_{1}- y_{27} \, \mathbf{a}_{2}+\left(z_{27} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{27} + c \left(z_{27} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{27} \,\mathbf{\hat{y}}+c \left(z_{27} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XI
$\mathbf{B_{55}}$ = $x_{28} \, \mathbf{a}_{1}+y_{28} \, \mathbf{a}_{2}+z_{28} \, \mathbf{a}_{3}$ = $\left(a x_{28} + c z_{28} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{28} \,\mathbf{\hat{y}}+c z_{28} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XII
$\mathbf{B_{56}}$ = $x_{28} \, \mathbf{a}_{1}- y_{28} \, \mathbf{a}_{2}+\left(z_{28} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{28} + c \left(z_{28} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{28} \,\mathbf{\hat{y}}+c \left(z_{28} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XII
$\mathbf{B_{57}}$ = $x_{29} \, \mathbf{a}_{1}+y_{29} \, \mathbf{a}_{2}+z_{29} \, \mathbf{a}_{3}$ = $\left(a x_{29} + c z_{29} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{29} \,\mathbf{\hat{y}}+c z_{29} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XIII
$\mathbf{B_{58}}$ = $x_{29} \, \mathbf{a}_{1}- y_{29} \, \mathbf{a}_{2}+\left(z_{29} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{29} + c \left(z_{29} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{29} \,\mathbf{\hat{y}}+c \left(z_{29} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XIII
$\mathbf{B_{59}}$ = $x_{30} \, \mathbf{a}_{1}+y_{30} \, \mathbf{a}_{2}+z_{30} \, \mathbf{a}_{3}$ = $\left(a x_{30} + c z_{30} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{30} \,\mathbf{\hat{y}}+c z_{30} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XIV
$\mathbf{B_{60}}$ = $x_{30} \, \mathbf{a}_{1}- y_{30} \, \mathbf{a}_{2}+\left(z_{30} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{30} + c \left(z_{30} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{30} \,\mathbf{\hat{y}}+c \left(z_{30} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XIV
$\mathbf{B_{61}}$ = $x_{31} \, \mathbf{a}_{1}+y_{31} \, \mathbf{a}_{2}+z_{31} \, \mathbf{a}_{3}$ = $\left(a x_{31} + c z_{31} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{31} \,\mathbf{\hat{y}}+c z_{31} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XV
$\mathbf{B_{62}}$ = $x_{31} \, \mathbf{a}_{1}- y_{31} \, \mathbf{a}_{2}+\left(z_{31} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{31} + c \left(z_{31} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{31} \,\mathbf{\hat{y}}+c \left(z_{31} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XV
$\mathbf{B_{63}}$ = $x_{32} \, \mathbf{a}_{1}+y_{32} \, \mathbf{a}_{2}+z_{32} \, \mathbf{a}_{3}$ = $\left(a x_{32} + c z_{32} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{32} \,\mathbf{\hat{y}}+c z_{32} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XVI
$\mathbf{B_{64}}$ = $x_{32} \, \mathbf{a}_{1}- y_{32} \, \mathbf{a}_{2}+\left(z_{32} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{32} + c \left(z_{32} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{32} \,\mathbf{\hat{y}}+c \left(z_{32} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XVI
$\mathbf{B_{65}}$ = $x_{33} \, \mathbf{a}_{1}+y_{33} \, \mathbf{a}_{2}+z_{33} \, \mathbf{a}_{3}$ = $\left(a x_{33} + c z_{33} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{33} \,\mathbf{\hat{y}}+c z_{33} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XVII
$\mathbf{B_{66}}$ = $x_{33} \, \mathbf{a}_{1}- y_{33} \, \mathbf{a}_{2}+\left(z_{33} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{33} + c \left(z_{33} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{33} \,\mathbf{\hat{y}}+c \left(z_{33} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XVII
$\mathbf{B_{67}}$ = $x_{34} \, \mathbf{a}_{1}+y_{34} \, \mathbf{a}_{2}+z_{34} \, \mathbf{a}_{3}$ = $\left(a x_{34} + c z_{34} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{34} \,\mathbf{\hat{y}}+c z_{34} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XVIII
$\mathbf{B_{68}}$ = $x_{34} \, \mathbf{a}_{1}- y_{34} \, \mathbf{a}_{2}+\left(z_{34} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{34} + c \left(z_{34} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{34} \,\mathbf{\hat{y}}+c \left(z_{34} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XVIII
$\mathbf{B_{69}}$ = $x_{35} \, \mathbf{a}_{1}+y_{35} \, \mathbf{a}_{2}+z_{35} \, \mathbf{a}_{3}$ = $\left(a x_{35} + c z_{35} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{35} \,\mathbf{\hat{y}}+c z_{35} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XIX
$\mathbf{B_{70}}$ = $x_{35} \, \mathbf{a}_{1}- y_{35} \, \mathbf{a}_{2}+\left(z_{35} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{35} + c \left(z_{35} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{35} \,\mathbf{\hat{y}}+c \left(z_{35} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XIX
$\mathbf{B_{71}}$ = $x_{36} \, \mathbf{a}_{1}+y_{36} \, \mathbf{a}_{2}+z_{36} \, \mathbf{a}_{3}$ = $\left(a x_{36} + c z_{36} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{36} \,\mathbf{\hat{y}}+c z_{36} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XX
$\mathbf{B_{72}}$ = $x_{36} \, \mathbf{a}_{1}- y_{36} \, \mathbf{a}_{2}+\left(z_{36} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{36} + c \left(z_{36} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{36} \,\mathbf{\hat{y}}+c \left(z_{36} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XX
$\mathbf{B_{73}}$ = $x_{37} \, \mathbf{a}_{1}+y_{37} \, \mathbf{a}_{2}+z_{37} \, \mathbf{a}_{3}$ = $\left(a x_{37} + c z_{37} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{37} \,\mathbf{\hat{y}}+c z_{37} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXI
$\mathbf{B_{74}}$ = $x_{37} \, \mathbf{a}_{1}- y_{37} \, \mathbf{a}_{2}+\left(z_{37} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{37} + c \left(z_{37} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{37} \,\mathbf{\hat{y}}+c \left(z_{37} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXI
$\mathbf{B_{75}}$ = $x_{38} \, \mathbf{a}_{1}+y_{38} \, \mathbf{a}_{2}+z_{38} \, \mathbf{a}_{3}$ = $\left(a x_{38} + c z_{38} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{38} \,\mathbf{\hat{y}}+c z_{38} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXII
$\mathbf{B_{76}}$ = $x_{38} \, \mathbf{a}_{1}- y_{38} \, \mathbf{a}_{2}+\left(z_{38} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{38} + c \left(z_{38} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{38} \,\mathbf{\hat{y}}+c \left(z_{38} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXII
$\mathbf{B_{77}}$ = $x_{39} \, \mathbf{a}_{1}+y_{39} \, \mathbf{a}_{2}+z_{39} \, \mathbf{a}_{3}$ = $\left(a x_{39} + c z_{39} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{39} \,\mathbf{\hat{y}}+c z_{39} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXIII
$\mathbf{B_{78}}$ = $x_{39} \, \mathbf{a}_{1}- y_{39} \, \mathbf{a}_{2}+\left(z_{39} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{39} + c \left(z_{39} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{39} \,\mathbf{\hat{y}}+c \left(z_{39} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXIII
$\mathbf{B_{79}}$ = $x_{40} \, \mathbf{a}_{1}+y_{40} \, \mathbf{a}_{2}+z_{40} \, \mathbf{a}_{3}$ = $\left(a x_{40} + c z_{40} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{40} \,\mathbf{\hat{y}}+c z_{40} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXIV
$\mathbf{B_{80}}$ = $x_{40} \, \mathbf{a}_{1}- y_{40} \, \mathbf{a}_{2}+\left(z_{40} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{40} + c \left(z_{40} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{40} \,\mathbf{\hat{y}}+c \left(z_{40} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXIV
$\mathbf{B_{81}}$ = $x_{41} \, \mathbf{a}_{1}+y_{41} \, \mathbf{a}_{2}+z_{41} \, \mathbf{a}_{3}$ = $\left(a x_{41} + c z_{41} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{41} \,\mathbf{\hat{y}}+c z_{41} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXV
$\mathbf{B_{82}}$ = $x_{41} \, \mathbf{a}_{1}- y_{41} \, \mathbf{a}_{2}+\left(z_{41} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{41} + c \left(z_{41} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{41} \,\mathbf{\hat{y}}+c \left(z_{41} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXV
$\mathbf{B_{83}}$ = $x_{42} \, \mathbf{a}_{1}+y_{42} \, \mathbf{a}_{2}+z_{42} \, \mathbf{a}_{3}$ = $\left(a x_{42} + c z_{42} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{42} \,\mathbf{\hat{y}}+c z_{42} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXVI
$\mathbf{B_{84}}$ = $x_{42} \, \mathbf{a}_{1}- y_{42} \, \mathbf{a}_{2}+\left(z_{42} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{42} + c \left(z_{42} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{42} \,\mathbf{\hat{y}}+c \left(z_{42} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXVI
$\mathbf{B_{85}}$ = $x_{43} \, \mathbf{a}_{1}+y_{43} \, \mathbf{a}_{2}+z_{43} \, \mathbf{a}_{3}$ = $\left(a x_{43} + c z_{43} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{43} \,\mathbf{\hat{y}}+c z_{43} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXVII
$\mathbf{B_{86}}$ = $x_{43} \, \mathbf{a}_{1}- y_{43} \, \mathbf{a}_{2}+\left(z_{43} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{43} + c \left(z_{43} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{43} \,\mathbf{\hat{y}}+c \left(z_{43} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXVII
$\mathbf{B_{87}}$ = $x_{44} \, \mathbf{a}_{1}+y_{44} \, \mathbf{a}_{2}+z_{44} \, \mathbf{a}_{3}$ = $\left(a x_{44} + c z_{44} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{44} \,\mathbf{\hat{y}}+c z_{44} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXVIII
$\mathbf{B_{88}}$ = $x_{44} \, \mathbf{a}_{1}- y_{44} \, \mathbf{a}_{2}+\left(z_{44} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{44} + c \left(z_{44} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{44} \,\mathbf{\hat{y}}+c \left(z_{44} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXVIII
$\mathbf{B_{89}}$ = $x_{45} \, \mathbf{a}_{1}+y_{45} \, \mathbf{a}_{2}+z_{45} \, \mathbf{a}_{3}$ = $\left(a x_{45} + c z_{45} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{45} \,\mathbf{\hat{y}}+c z_{45} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXIX
$\mathbf{B_{90}}$ = $x_{45} \, \mathbf{a}_{1}- y_{45} \, \mathbf{a}_{2}+\left(z_{45} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{45} + c \left(z_{45} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{45} \,\mathbf{\hat{y}}+c \left(z_{45} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXIX
$\mathbf{B_{91}}$ = $x_{46} \, \mathbf{a}_{1}+y_{46} \, \mathbf{a}_{2}+z_{46} \, \mathbf{a}_{3}$ = $\left(a x_{46} + c z_{46} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{46} \,\mathbf{\hat{y}}+c z_{46} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXX
$\mathbf{B_{92}}$ = $x_{46} \, \mathbf{a}_{1}- y_{46} \, \mathbf{a}_{2}+\left(z_{46} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{46} + c \left(z_{46} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{46} \,\mathbf{\hat{y}}+c \left(z_{46} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXX
$\mathbf{B_{93}}$ = $x_{47} \, \mathbf{a}_{1}+y_{47} \, \mathbf{a}_{2}+z_{47} \, \mathbf{a}_{3}$ = $\left(a x_{47} + c z_{47} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{47} \,\mathbf{\hat{y}}+c z_{47} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXXI
$\mathbf{B_{94}}$ = $x_{47} \, \mathbf{a}_{1}- y_{47} \, \mathbf{a}_{2}+\left(z_{47} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{47} + c \left(z_{47} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{47} \,\mathbf{\hat{y}}+c \left(z_{47} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXXI
$\mathbf{B_{95}}$ = $x_{48} \, \mathbf{a}_{1}+y_{48} \, \mathbf{a}_{2}+z_{48} \, \mathbf{a}_{3}$ = $\left(a x_{48} + c z_{48} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{48} \,\mathbf{\hat{y}}+c z_{48} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXXII
$\mathbf{B_{96}}$ = $x_{48} \, \mathbf{a}_{1}- y_{48} \, \mathbf{a}_{2}+\left(z_{48} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{48} + c \left(z_{48} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{48} \,\mathbf{\hat{y}}+c \left(z_{48} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXXII
$\mathbf{B_{97}}$ = $x_{49} \, \mathbf{a}_{1}+y_{49} \, \mathbf{a}_{2}+z_{49} \, \mathbf{a}_{3}$ = $\left(a x_{49} + c z_{49} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{49} \,\mathbf{\hat{y}}+c z_{49} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXXIII
$\mathbf{B_{98}}$ = $x_{49} \, \mathbf{a}_{1}- y_{49} \, \mathbf{a}_{2}+\left(z_{49} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{49} + c \left(z_{49} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{49} \,\mathbf{\hat{y}}+c \left(z_{49} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXXIII
$\mathbf{B_{99}}$ = $x_{50} \, \mathbf{a}_{1}+y_{50} \, \mathbf{a}_{2}+z_{50} \, \mathbf{a}_{3}$ = $\left(a x_{50} + c z_{50} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{50} \,\mathbf{\hat{y}}+c z_{50} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXXIV
$\mathbf{B_{100}}$ = $x_{50} \, \mathbf{a}_{1}- y_{50} \, \mathbf{a}_{2}+\left(z_{50} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{50} + c \left(z_{50} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{50} \,\mathbf{\hat{y}}+c \left(z_{50} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXXIV
$\mathbf{B_{101}}$ = $x_{51} \, \mathbf{a}_{1}+y_{51} \, \mathbf{a}_{2}+z_{51} \, \mathbf{a}_{3}$ = $\left(a x_{51} + c z_{51} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{51} \,\mathbf{\hat{y}}+c z_{51} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXXV
$\mathbf{B_{102}}$ = $x_{51} \, \mathbf{a}_{1}- y_{51} \, \mathbf{a}_{2}+\left(z_{51} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{51} + c \left(z_{51} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{51} \,\mathbf{\hat{y}}+c \left(z_{51} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXXV
$\mathbf{B_{103}}$ = $x_{52} \, \mathbf{a}_{1}+y_{52} \, \mathbf{a}_{2}+z_{52} \, \mathbf{a}_{3}$ = $\left(a x_{52} + c z_{52} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{52} \,\mathbf{\hat{y}}+c z_{52} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXXVI
$\mathbf{B_{104}}$ = $x_{52} \, \mathbf{a}_{1}- y_{52} \, \mathbf{a}_{2}+\left(z_{52} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{52} + c \left(z_{52} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{52} \,\mathbf{\hat{y}}+c \left(z_{52} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXXVI
$\mathbf{B_{105}}$ = $x_{53} \, \mathbf{a}_{1}+y_{53} \, \mathbf{a}_{2}+z_{53} \, \mathbf{a}_{3}$ = $\left(a x_{53} + c z_{53} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{53} \,\mathbf{\hat{y}}+c z_{53} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXXVII
$\mathbf{B_{106}}$ = $x_{53} \, \mathbf{a}_{1}- y_{53} \, \mathbf{a}_{2}+\left(z_{53} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{53} + c \left(z_{53} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{53} \,\mathbf{\hat{y}}+c \left(z_{53} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXXVII
$\mathbf{B_{107}}$ = $x_{54} \, \mathbf{a}_{1}+y_{54} \, \mathbf{a}_{2}+z_{54} \, \mathbf{a}_{3}$ = $\left(a x_{54} + c z_{54} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{54} \,\mathbf{\hat{y}}+c z_{54} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXXVIII
$\mathbf{B_{108}}$ = $x_{54} \, \mathbf{a}_{1}- y_{54} \, \mathbf{a}_{2}+\left(z_{54} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{54} + c \left(z_{54} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{54} \,\mathbf{\hat{y}}+c \left(z_{54} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXXVIII
$\mathbf{B_{109}}$ = $x_{55} \, \mathbf{a}_{1}+y_{55} \, \mathbf{a}_{2}+z_{55} \, \mathbf{a}_{3}$ = $\left(a x_{55} + c z_{55} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{55} \,\mathbf{\hat{y}}+c z_{55} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXXIX
$\mathbf{B_{110}}$ = $x_{55} \, \mathbf{a}_{1}- y_{55} \, \mathbf{a}_{2}+\left(z_{55} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{55} + c \left(z_{55} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{55} \,\mathbf{\hat{y}}+c \left(z_{55} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XXXIX
$\mathbf{B_{111}}$ = $x_{56} \, \mathbf{a}_{1}+y_{56} \, \mathbf{a}_{2}+z_{56} \, \mathbf{a}_{3}$ = $\left(a x_{56} + c z_{56} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{56} \,\mathbf{\hat{y}}+c z_{56} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XL
$\mathbf{B_{112}}$ = $x_{56} \, \mathbf{a}_{1}- y_{56} \, \mathbf{a}_{2}+\left(z_{56} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{56} + c \left(z_{56} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{56} \,\mathbf{\hat{y}}+c \left(z_{56} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XL
$\mathbf{B_{113}}$ = $x_{57} \, \mathbf{a}_{1}+y_{57} \, \mathbf{a}_{2}+z_{57} \, \mathbf{a}_{3}$ = $\left(a x_{57} + c z_{57} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{57} \,\mathbf{\hat{y}}+c z_{57} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XLI
$\mathbf{B_{114}}$ = $x_{57} \, \mathbf{a}_{1}- y_{57} \, \mathbf{a}_{2}+\left(z_{57} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{57} + c \left(z_{57} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{57} \,\mathbf{\hat{y}}+c \left(z_{57} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XLI
$\mathbf{B_{115}}$ = $x_{58} \, \mathbf{a}_{1}+y_{58} \, \mathbf{a}_{2}+z_{58} \, \mathbf{a}_{3}$ = $\left(a x_{58} + c z_{58} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{58} \,\mathbf{\hat{y}}+c z_{58} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XLII
$\mathbf{B_{116}}$ = $x_{58} \, \mathbf{a}_{1}- y_{58} \, \mathbf{a}_{2}+\left(z_{58} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{58} + c \left(z_{58} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{58} \,\mathbf{\hat{y}}+c \left(z_{58} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XLII
$\mathbf{B_{117}}$ = $x_{59} \, \mathbf{a}_{1}+y_{59} \, \mathbf{a}_{2}+z_{59} \, \mathbf{a}_{3}$ = $\left(a x_{59} + c z_{59} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{59} \,\mathbf{\hat{y}}+c z_{59} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XLIII
$\mathbf{B_{118}}$ = $x_{59} \, \mathbf{a}_{1}- y_{59} \, \mathbf{a}_{2}+\left(z_{59} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{59} + c \left(z_{59} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{59} \,\mathbf{\hat{y}}+c \left(z_{59} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XLIII
$\mathbf{B_{119}}$ = $x_{60} \, \mathbf{a}_{1}+y_{60} \, \mathbf{a}_{2}+z_{60} \, \mathbf{a}_{3}$ = $\left(a x_{60} + c z_{60} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{60} \,\mathbf{\hat{y}}+c z_{60} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XLIV
$\mathbf{B_{120}}$ = $x_{60} \, \mathbf{a}_{1}- y_{60} \, \mathbf{a}_{2}+\left(z_{60} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{60} + c \left(z_{60} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{60} \,\mathbf{\hat{y}}+c \left(z_{60} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XLIV
$\mathbf{B_{121}}$ = $x_{61} \, \mathbf{a}_{1}+y_{61} \, \mathbf{a}_{2}+z_{61} \, \mathbf{a}_{3}$ = $\left(a x_{61} + c z_{61} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{61} \,\mathbf{\hat{y}}+c z_{61} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XLV
$\mathbf{B_{122}}$ = $x_{61} \, \mathbf{a}_{1}- y_{61} \, \mathbf{a}_{2}+\left(z_{61} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{61} + c \left(z_{61} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{61} \,\mathbf{\hat{y}}+c \left(z_{61} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XLV
$\mathbf{B_{123}}$ = $x_{62} \, \mathbf{a}_{1}+y_{62} \, \mathbf{a}_{2}+z_{62} \, \mathbf{a}_{3}$ = $\left(a x_{62} + c z_{62} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{62} \,\mathbf{\hat{y}}+c z_{62} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XLVI
$\mathbf{B_{124}}$ = $x_{62} \, \mathbf{a}_{1}- y_{62} \, \mathbf{a}_{2}+\left(z_{62} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{62} + c \left(z_{62} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{62} \,\mathbf{\hat{y}}+c \left(z_{62} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XLVI

References

  • H. Fujishita, M. Sato, S. Sato, and S. Hoshino, Structure Determination of low-dimensional conductor Mo$_{8}$O$_{23}$, J. Solid State Chem. 60, 40–46 (1987), doi:10.1016/0022-4596(87)90218-0.

Prototype Generator

aflow --proto=A8B23_mP124_7_16a_46a --params=$a,b/a,c/a,\beta,x_{1},y_{1},z_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11},x_{12},y_{12},z_{12},x_{13},y_{13},z_{13},x_{14},y_{14},z_{14},x_{15},y_{15},z_{15},x_{16},y_{16},z_{16},x_{17},y_{17},z_{17},x_{18},y_{18},z_{18},x_{19},y_{19},z_{19},x_{20},y_{20},z_{20},x_{21},y_{21},z_{21},x_{22},y_{22},z_{22},x_{23},y_{23},z_{23},x_{24},y_{24},z_{24},x_{25},y_{25},z_{25},x_{26},y_{26},z_{26},x_{27},y_{27},z_{27},x_{28},y_{28},z_{28},x_{29},y_{29},z_{29},x_{30},y_{30},z_{30},x_{31},y_{31},z_{31},x_{32},y_{32},z_{32},x_{33},y_{33},z_{33},x_{34},y_{34},z_{34},x_{35},y_{35},z_{35},x_{36},y_{36},z_{36},x_{37},y_{37},z_{37},x_{38},y_{38},z_{38},x_{39},y_{39},z_{39},x_{40},y_{40},z_{40},x_{41},y_{41},z_{41},x_{42},y_{42},z_{42},x_{43},y_{43},z_{43},x_{44},y_{44},z_{44},x_{45},y_{45},z_{45},x_{46},y_{46},z_{46},x_{47},y_{47},z_{47},x_{48},y_{48},z_{48},x_{49},y_{49},z_{49},x_{50},y_{50},z_{50},x_{51},y_{51},z_{51},x_{52},y_{52},z_{52},x_{53},y_{53},z_{53},x_{54},y_{54},z_{54},x_{55},y_{55},z_{55},x_{56},y_{56},z_{56},x_{57},y_{57},z_{57},x_{58},y_{58},z_{58},x_{59},y_{59},z_{59},x_{60},y_{60},z_{60},x_{61},y_{61},z_{61},x_{62},y_{62},z_{62}$

Species:

Running:

Output: